The Fermat primality test is a probabilistic test to determine whether a number is a probable prime.
Contents
Concept
Fermat's little theorem states that if p is prime and
If we want to test whether p is prime, then we can pick random a's in the interval and see whether the equality holds. If the equality does not hold for a value of a, then p is composite. If the equality does hold for many values of a, then we can say that p is probably prime.
It might be in our tests that we do not pick any value for a such that the equality fails. Any a such that
when n is composite is known as a Fermat liar. Vice versa, in this case n is called Fermat pseudoprime to base a.
If we do pick an a such that
then a is known as a Fermat witness for the compositeness of n.
Example
Suppose we wish to determine whether n = 221 is prime. Randomly pick 1 < a < 221, say a = 38. We check the above equality and find that it holds:
Either 221 is prime, or 38 is a Fermat liar, so we take another a, say 24:
So 221 is composite and 38 was indeed a Fermat liar. Furthermore, 24 is a Fermat witness for the compositeness of 221.
Algorithm and running time
The algorithm can be written as follows:
Inputs: n: a value to test for primality, n>3; k: a parameter that determines the number of times to test for primalityOutput: composite if n is composite, otherwise probably primeRepeat k times:Pick a randomly in the range [2, n − 2]IfThe a values 1 and n-1 are not used as the equality holds for all n and all odd n respectively, hence testing them adds no value.
Using fast algorithms for modular exponentiation, the running time of this algorithm is O(k × log2n × log log n × log log log n), where k is the number of times we test a random a, and n is the value we want to test for primality.
Flaw
There are infinitely many values of
In general, if
are Fermat witnesses. For proof of this, let
and so all
Applications
As mentioned above, most applications use a Miller-Rabin or Baillie-PSW test for primality. Sometimes a Fermat test (along with some trial division by small primes) is performed first to improve performance. GMP since version 3.0 uses a base-210 Fermat test after trial division and before running Miller-Rabin tests. Libgcrypt uses a similar process with base 2 for the Fermat test, but OpenSSL does not.
In practice with most big number libraries such as GMP, the Fermat test is not noticeably faster than a Miller-Rabin test, and can be slower for many inputs.
As an exception, OpenPFGW uses only the Fermat test for probable prime testing. The program is typically used with multi-thousand digit inputs with a goal of maximum speed with very large inputs. Another well known program that relies only on the Fermat test is PGP where it is only used for testing of self-generated large random values (an open source counterpart, GNU Privacy Guard, uses a Fermat pretest followed by Miller-Rabin tests).