Puneet Varma (Editor)

Erythritol tetranitrate

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
Molar mass
  
302.11 g/mol

Boiling point
  
160 °C

Erythritol tetranitrate Erythritol tetranitrate Wikipedia

Erythritol tetranitrate 1 5g


Erythritol tetranitrate (ETN) is an explosive compound chemically similar to PETN. It is however thought to be 1/3 more sensitive to friction and impact. ETN is not well known, but in recent years has been used by amateur experimenters to replace PETN in improvised detonation cord or in boosters to initiate larger, less sensitive explosive charges. Due to the availability of erythritol as a natural sweetener and its relative ease of production in relation to PETN, ETN is a favoured homemade explosive compound to the amateur experimenter.

Contents

Erythritol tetranitrate Synthesis of erythritol tetranitrate tetranitrin PrepChemcom

Like many nitrate esters, ETN acts as a vasodilator, and was the active ingredient in the original "sustained release" tablets, made under a process patent in the early 1950s, called "nitroglyn". Ingesting ETN or prolonged skin contact can lead to absorption and what is known as a "nitro headache".

Erythritol tetranitrate Forum Member Provides Instructions for Erythritol Tetranitrate

Properties

Erythritol tetranitrate Trace detection and competitive ionization of erythritol

ETN has a relatively high velocity of detonation of 8000–8100 m/s at a Density of 1.6 g/cm3. It is white in color and odorless. ETN is commonly cast into mixtures with other high explosives. It is somewhat sensitive to shock and friction, so care should be taken while handling. ETN dissolves readily in acetone and other ketone solvents.

Erythritol tetranitrate Trace detection and competitive ionization of erythritol

Much like PETN, ETN is known for having a very long shelf life. Studies that directly observed the crystalline structure saw no signs of decomposition after four years of storage at room temperature. ETN has a Melting point of 61 °C, compared to PETN which has a melting point of 141.3 °C. Recent studies of ETN decomposition suggested a unimolecular rate-limiting step in which the O-NO2 bond is cleaved and begins the decomposition sequence.

Oxygen balance

Erythritol tetranitrate Synthesis of erythritol tetranitrate tetranitrin PrepChemcom

One quality this explosive has, that PETN does not, is a positive oxygen balance. Having a positive oxygen balance means that ETN possesses more than enough oxygen in its structure to fully oxidize all of its carbon and hydrogen upon detonation. This can be seen in the schematic chemical equation below.

2 C4H6N4O12 → 8 CO2 + 6 H2O + 4 N2 + 1 O2

Whereas PETN decomposes to:

2 C5H8N4O12 → 6 CO2 + 8 H2O + 4 N2 + 4 CO
Erythritol tetranitrate Erythritol tetranitrate Wikipedia

The carbon monoxide (CO) still requires oxygen to complete oxidation to carbon dioxide (CO2). A detailed study of the decomposition chemistry of ETN has been recently elucidated.

Erythritol tetranitrate mesoErythritol tetranitrate C4H6N4O12 ChemSpider

Thus for every two moles of ETN that decomposes, one free mole of O2 is released. This could be used to oxidize an added metal dust or an oxygen deficient explosive such as TNT or PETN.

Manufacture

Erythritol tetranitrate Jihadists Discuss Manufacturing ETN Explosive Military Manuals and

Like other nitrated polyols, ETN is made by nitrating erythritol through the mixing of concentrated sulfuric acid and a nitrate salt. Ammonium nitrate is commonly used for this type of reaction. The erythritol is added to the mixture to begin its nitration. Much better yields can be obtained by using concentrated nitric acid in place of the nitrate salt, in which case the sulfuric acid is used simply to absorb water and act as a catalyst from the resulting esterification, driving the reaction.

References

Erythritol tetranitrate Wikipedia