In discrete geometry, the Erdős distinct distances problem states that between n distinct points on a plane there are at least n1 − o(1) distinct distances. It was posed by Paul Erdős in 1946 and proven by Guth & Katz (2015).
Contents
The conjecture
In what follows let g(n) denote the minimal number of distinct distances between n points in the plane. In his 1946 paper, Erdős proved the estimates
for some constant
Partial results
Paul Erdős' 1946 lower bound of g(n) = Ω(n1/2) was successively improved to:
Higher dimensions
Erdős also considered the higher-dimensional variant of the problem: for d≥3 let gd(n) denote the minimal possible number of distinct distances among n point in the d-dimensional Euclidean space. He proved that gd(n) = Ω(n1/d) and gd(n) = O(n2/d) and conjectured that the upper bound is in fact sharp, i.e., gd(n) = Θ(n2/d) . Solymosi & Vu (2008) obtained the lower bound gd(n) = Ω(n2/d - 2/d(d+2)).