|  | ||
In cosmology, the equation of state of a perfect fluid is characterized by a dimensionless number                     
Contents
- The equation
- FLRW equations and the equation of state
- Non relativistic matter
- Ultra relativistic matter
- Acceleration of cosmic inflation
- Fluids
- Scalar modeling
- References
It is closely related to the thermodynamic equation of state and ideal gas law.
The equation
The perfect gas equation of state may be written as
where                     
where                     
FLRW equations and the equation of state
The equation of state may be used in Friedmann–Lemaître–Robertson–Walker equations to describe the evolution of an isotropic universe filled with a perfect fluid. If                     
If the fluid is the dominant form of matter in a flat universe, then
where                     
In general the Friedmann acceleration equation is
where                     
If we define (what might be called "effective") energy density and pressure as
and
the acceleration equation may be written as
Non-relativistic matter
The equation of state of ordinary non-relativistic matter (e.g. cold dust) is                     
Ultra-relativistic matter
The equation of state of ultra-relativistic matter (e.g. radiation, but also matter in the very early universe) is                     
Acceleration of cosmic inflation
Cosmic inflation and the accelerated expansion of the universe can be characterized by the equation of state of dark energy. In the simplest case, the equation of state of the cosmological constant is                     
Hypothetical phantom energy would have an equation of state                     
Fluids
In an expanding universe, fluids with larger equations of state disappear more quickly than those with smaller equations of state. This is the origin of the flatness and monopole problems of the big bang: curvature has                     
Scalar modeling
A scalar field                     
where                                           
