In mathematics, an elliptic hypergeometric series is a series Σcn such that the ratio cn/cn−1 is an elliptic function of n, analogous to generalized hypergeometric series where the ratio is a rational function of n, and basic hypergeometric series where the ratio is a periodic function of the complex number n. They were introduced by Frenkel & Turaev (1997) in their study of elliptic 6-j symbols.
For surveys of elliptic hypergeometric series see Gasper & Rahman (2004) or Spiridonov (2008).
The q-Pochhammer symbol is defined by
                              (          a          ;          q                      )                          n                                =                      ∏                          k              =              0                                      n              −              1                                (          1          −          a                      q                          k                                )          =          (          1          −          a          )          (          1          −          a          q          )          (          1          −          a                      q                          2                                )          ⋯          (          1          −          a                      q                          n              −              1                                )          .                                                      (                      a                          1                                ,                      a                          2                                ,          …          ,                      a                          m                                ;          q                      )                          n                                =          (                      a                          1                                ;          q                      )                          n                                (                      a                          2                                ;          q                      )                          n                                …          (                      a                          m                                ;          q                      )                          n                                .                        The modified Jacobi theta function with argument x and nome p is defined by
                              θ          (          x          ;          p          )          =          (          x          ,          p                      /                    x          ;          p                      )                          ∞                                                                            θ          (                      x                          1                                ,          .          .          .          ,                      x                          m                                ;          p          )          =          θ          (                      x                          1                                ;          p          )          .          .          .          θ          (                      x                          m                                ;          p          )                        The elliptic shifted factorial is defined by
                              (          a          ;          q          ,          p                      )                          n                                =          θ          (          a          ;          p          )          θ          (          a          q          ;          p          )          .          .          .          θ          (          a                      q                          n              −              1                                ;          p          )                                                      (                      a                          1                                ,          .          .          .          ,                      a                          m                                ;          q          ,          p                      )                          n                                =          (                      a                          1                                ;          q          ,          p                      )                          n                                ⋯          (                      a                          m                                ;          q          ,          p                      )                          n                                              The theta hypergeometric series r+1Er is defined by
                                                                                r              +              1                                            E                          r                                (                      a                          1                                ,          .          .          .                      a                          r              +              1                                ;                      b                          1                                ,          .          .          .          ,                      b                          r                                ;          q          ,          p          ;          z          )          =                      ∑                          n              =              0                                      ∞                                                                          (                                  a                                      1                                                  ,                .                .                .                ,                                  a                                      r                    +                    1                                                  ;                q                ;                p                                  )                                      n                                                                              (                q                ,                                  b                                      1                                                  ,                .                .                .                ,                                  b                                      r                                                  ;                q                ,                p                                  )                                      n                                                                                            z                          n                                              The very well poised theta hypergeometric series r+1Vr is defined by
                                                                                r              +              1                                            V                          r                                (                      a                          1                                ;                      a                          6                                ,                      a                          7                                ,          .          .          .                      a                          r              +              1                                ;          q          ,          p          ;          z          )          =                      ∑                          n              =              0                                      ∞                                                                          θ                (                                  a                                      1                                                                    q                                      2                    n                                                  ;                p                )                                            θ                (                                  a                                      1                                                  ;                p                )                                                                                        (                                  a                                      1                                                  ,                                  a                                      6                                                  ,                                  a                                      7                                                  ,                .                .                .                ,                                  a                                      r                    +                    1                                                  ;                q                ;                p                                  )                                      n                                                                              (                q                ,                                  a                                      1                                                  q                                  /                                                  a                                      6                                                  ,                                  a                                      1                                                  q                                  /                                                  a                                      7                                                  ,                .                .                .                ,                                  a                                      1                                                  q                                  /                                                  a                                      r                    +                    1                                                  ;                q                ,                p                                  )                                      n                                                                                (          q          z                      )                          n                                              The bilateral theta hypergeometric series rGr is defined by
                                                                                r                                            G                          r                                (                      a                          1                                ,          .          .          .                      a                          r                                ;                      b                          1                                ,          .          .          .          ,                      b                          r                                ;          q          ,          p          ;          z          )          =                      ∑                          n              =              −              ∞                                      ∞                                                                          (                                  a                                      1                                                  ,                .                .                .                ,                                  a                                      r                                                  ;                q                ;                p                                  )                                      n                                                                              (                                  b                                      1                                                  ,                .                .                .                ,                                  b                                      r                                                  ;                q                ,                p                                  )                                      n                                                                                            z                          n                                              The elliptic numbers are defined by
                    [        a        ;        σ        ,        τ        ]        =                                                            θ                                  1                                            (              π              σ              a              ,                              e                                  π                  i                  τ                                            )                                                      θ                                  1                                            (              π              σ              ,                              e                                  π                  i                  τ                                            )                                              where the Jacobi theta function is defined by
                              θ                      1                          (        x        ,        q        )        =                  ∑                      n            =            −            ∞                                ∞                          (        −        1                  )                      n                                    q                      (            n            +            1                          /                        2                          )                              2                                                              e                      (            2            n            +            1            )            i            x                                  The additive elliptic shifted factorials are defined by
                    [        a        ;        σ        ,        τ                  ]                      n                          =        [        a        ;        σ        ,        τ        ]        [        a        +        1        ;        σ        ,        τ        ]        .        .        .        [        a        +        n        −        1        ;        σ        ,        τ        ]                                    [                  a                      1                          ,        .        .        .        ,                  a                      m                          ;        σ        ,        τ        ]        =        [                  a                      1                          ;        σ        ,        τ        ]        .        .        .        [                  a                      m                          ;        σ        ,        τ        ]                The additive theta hypergeometric series r+1er is defined by
                                                                                r              +              1                                            e                          r                                (                      a                          1                                ,          .          .          .                      a                          r              +              1                                ;                      b                          1                                ,          .          .          .          ,                      b                          r                                ;          σ          ,          τ          ;          z          )          =                      ∑                          n              =              0                                      ∞                                                                          [                                  a                                      1                                                  ,                .                .                .                ,                                  a                                      r                    +                    1                                                  ;                σ                ;                τ                                  ]                                      n                                                                              [                1                ,                                  b                                      1                                                  ,                .                .                .                ,                                  b                                      r                                                  ;                σ                ,                τ                                  ]                                      n                                                                                            z                          n                                              The additive very well poised theta hypergeometric series r+1vr is defined by
                                                                                r              +              1                                            v                          r                                (                      a                          1                                ;                      a                          6                                ,          .          .          .                      a                          r              +              1                                ;          σ          ,          τ          ;          z          )          =                      ∑                          n              =              0                                      ∞                                                                          [                                  a                                      1                                                  +                2                n                ;                σ                ,                τ                ]                                            [                                  a                                      1                                                  ;                σ                ,                τ                ]                                                                                        [                                  a                                      1                                                  ,                                  a                                      6                                                  ,                .                .                .                ,                                  a                                      r                    +                    1                                                  ;                σ                ,                τ                                  ]                                      n                                                                              [                1                ,                1                +                                  a                                      1                                                  −                                  a                                      6                                                  ,                .                .                .                ,                1                +                                  a                                      1                                                  −                                  a                                      r                    +                    1                                                  ;                σ                ,                τ                                  ]                                      n                                                                                            z                          n