![]() | ||
Einstein coefficients are mathematical quantities which are a measure of the probability of absorption or emission of light by an atom or molecule. The Einstein A coefficient is related to the rate of spontaneous emission of light and the Einstein B coefficients are related to the absorption and stimulated emission of light.
Contents
Spectral lines
In physics, one thinks of a spectral line from two viewpoints.
An emission line is formed when an atom or molecule makes a transition from a particular discrete energy level E2 of an atom, to a lower energy level E1, emitting a photon of a particular energy and wavelength. A spectrum of many such photons will show an emission spike at the wavelength associated with these photons.
An absorption line is formed when an atom or molecule makes a transition from a lower, E1, to a higher discrete energy state, E2, with a photon being absorbed in the process. These absorbed photons generally come from background continuum radiation (the full spectrum of electromagnetic radiation) and a spectrum will show a drop in the continuum radiation at the wavelength associated with the absorbed photons.
The two states must be bound states in which the electron is bound to the atom or molecule, so the transition is sometimes referred to as a "bound–bound" transition, as opposed to a transition in which the electron is ejected out of the atom completely ("bound–free" transition) into a continuum state, leaving an ionized atom, and generating continuum radiation.
A photon with an energy equal to the difference E2 - E1 between the energy levels is released or absorbed in the process. The frequency ν at which the spectral line occurs is related to the photon energy by Bohr's frequency condition E2 - E1 = hν where h denotes Planck's constant.
Emission and absorption coefficients
An atomic spectral line refers to emission and absorption events in a gas in which
The emission of atomic line radiation at frequency ν may be described by an emission coefficient
where
The absorption of atomic line radiation may be described by an absorption coefficient
where
The above equations have ignored the influence of the spectroscopic line shape. To be accurate, the above equations need to be multiplied by the (normalized) spectral line shape, in which case the units will change to include a 1/Hz term.
For conditions of thermodynamic equilibrium, together the number densities
Equilibrium conditions
The number densities
In the cases of thermodynamic equilibrium and of local thermodynamic equilibrium, the number densities of the atoms, both excited and unexcited, may be calculated from the Maxwell–Boltzmann distribution, but for other cases, (e.g. lasers) the calculation is more complicated.
Einstein coefficients
In 1916, Albert Einstein proposed that there are three processes occurring in the formation of an atomic spectral line. The three processes are referred to as spontaneous emission, stimulated emission, and absorption. With each is associated an Einstein coefficient, which is a measure of the probability of that particular process occurring. Einstein considered the case of isotropic radiation of frequency ν and spectral energy density ρ(ν).
Various formulations
Hilborn has compared various formulations for derivations for the Einstein coefficients, by various authors. For example, Herzberg works with irradiance and wavenumber. Yariv works with energy per unit volume per unit frequency interval; also; this is how the present account is formulated. Mihalas & Weibel-Mihalas work with radiance and frequency; also Chandrasekhar; also Goody & Yung; Loudon uses angular frequency and radiance.
Spontaneous emission
Spontaneous emission is the process by which an electron "spontaneously" (i.e. without any outside influence) decays from a higher energy level to a lower one. The process is described by the Einstein coefficient A21 (s−1), which gives the probability per unit time that an electron in state 2 with energy
The same process results in increasing of the population of the state 1:
Stimulated emission
Stimulated emission (also known as induced emission) is the process by which an electron is induced to jump from a higher energy level to a lower one by the presence of electromagnetic radiation at (or near) the frequency of the transition. From the thermodynamic viewpoint, this process must be regarded as negative absorption. The process is described by the Einstein coefficient
where
Stimulated emission is one of the fundamental processes that led to the development of the laser. Laser radiation is, however, very far from the present case of isotropic radiation.
Photon absorption
Absorption is the process by which a photon is absorbed by the atom, causing an electron to jump from a lower energy level to a higher one. The process is described by the Einstein coefficient
Detailed balancing
The Einstein coefficients are fixed probabilities per time associated with each atom, and do not depend on the state of the gas of which the atoms are a part. Therefore, any relationship that we can derive between the coefficients at, say, thermodynamic equilibrium will be valid universally.
At thermodynamic equilibrium, we will have a simple balancing, in which the net change in the number of any excited atoms is zero, being balanced by loss and gain due to all processes. With respect to bound-bound transitions, we will have detailed balancing as well, which states that the net exchange between any two levels will be balanced. This is because the probabilities of transition cannot be affected by the presence or absence of other excited atoms. Detailed balance (valid only at equilibrium) requires that the change in time of the number of atoms in level 1 due to the above three processes be zero:
Along with detailed balancing, at temperature T we may use our knowledge of the equilibrium energy distribution of the atoms, as stated in the Maxwell–Boltzmann distribution, and the equilibrium distribution of the photons, as stated in Planck's law of black body radiation to derive universal relationships between the Einstein coefficients.
From the Maxwell–Boltzmann distribution we have for the number of excited atomic species i:
where n is the total number density of the atomic species, excited and unexcited, k is Boltzmann's constant, T is the temperature,
where:
where
Substituting these expressions into the equation of detailed balancing and remembering that E2 − E1 = hν yields:
separating to:
The above equation must hold at any temperature, so
and
Therefore, the three Einstein coefficients are interrelated by:
and
When this relation is inserted into the original equation, one can also find a relation between
Oscillator strengths
The oscillator strength
where