![]() | ||
In mathematics, especially in geometry, a double lattice in ℝn is a discrete subgroup of the group of Euclidean motions that consists only of translations and point reflections and such that the subgroup of translations is a lattice. The orbit of any point under the action of a double lattice is a union of two Bravais lattices, related to each other by a point reflection. A double lattice in two dimensions is a p2 wallpaper group. In three dimensions, a double lattice is a space group of the type 1, as denoted by international notation.
Double lattice packing
A packing that can be described as the orbit of a body under the action of a double lattice is called a double lattice packing. In many cases the highest known packing density for a body is achieved by a double lattice. Examples include the regular pentagon, heptagon, and nonagon and the equilateral triangular bipyramid. Włodzimierz Kuperberg and Greg Kuperberg showed that all convex planar bodies can pack at a density of at least √3/2 by use a double lattice.