Dispersionless (or quasi-classical) limits of integrable partial differential equations (PDE) arise in various problems of mathematics and physics and have been intensively studied in recent literature (see, f.i., [1]-[5]). They typically arise when considering slowly modulated long waves of an integrable dispersive PDE system.
Contents
Dispersionless KP equation
The dispersionless Kadomtsev–Petviashvili equation (dKPE) has the form
It arises from the commutation
of the following pair of 1-parameter families of vector fields
where
The Benney moment equations
The dispersionless KP system is closely related to the Benney moment hierarchy, each of which is a dispersionless integrable system:
These arise as the consistency condition between
and the simplest two evolutions in the hierarchy are:
The dKP is recovered on setting
and eliminating the other moments, as well as identifying
If one sets
These may also be derived from considering slowly modulated wave train solutions of the nonlinear Schrodinger equation. Such 'reductions', expressing the moments in terms of finitely many dependent variables, are described by the Gibbons-Tsarev equation.
Dispersionless Korteweg–de Vries equation
The dispersionless Korteweg–de Vries equation (dKdVE) reads as
It is the dispersionless or quasiclassical limit of the Korteweg–de Vries equation. It is satisfied by
Dispersionless Novikov–Veselov equation
The dispersionless Novikov-Veselov equation is most commonly written as the following equation for a real-valued function
where the following standard notation of complex analysis is used: