Harman Patil (Editor)

Dieselisation

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
Dieselisation

Dieselisation or dieselization is a term generally used for the increasingly common use of diesel fuel in vehicles, as opposed to gasoline or steam engines.

Contents

Water transport

The two-stroke marine diesel engine was introduced in 1922 and remains in use today. It is the most efficient prime mover, with models over 100,000 horsepower and a thermal efficiency of 50%. The market share of steam ships peaked around 1925 (a few sailing ships remained) and by the early 1950s diesel ships held over 50% of the market.

Rail transport

In rail transport, dieselisation refers to the replacement of the steam locomotive or electric locomotive with the diesel-electric locomotive (often referred to as a "diesel locomotive"), a process which began in the 1930s and is now substantially complete in the US, UK and Latin America. Elsewhere, electric traction has mostly taken the place of steam locomotives in the main lines and diesel-electric and diesel-hydraulic locomotives are used in less frequently used side lines.

The replacement of either steam or diesel haulage with electric locomotives is known as electrification. Whereas the benefit of replacing steam traction is indisputable, there is some dispute as to whether it is best replaced by dieselisation or electrification. Electrification has a high initial capital cost but the operating costs are lower. The overall savings depend on the effect of the investment cost compared with the savings due to lower operational and maintenance costs and the influence of better acceleration and tractive effort on railroad throughput. These are obviously different for e.g. urban networks and very long-distance networks with low frequencies. However, many railway commentators are increasingly suggesting that the ability of railways to operate with electricity not produced from fossil fuels may offer a decisive advantage over diesel power. In some countries, such as Switzerland, Sweden, Poland and Japan, electrification ended the use of steam power.

Advantages of diesel in rail transport

Dieselisation took place largely because of the tremendous reduction in operating costs it allowed. Steam locomotives require large pools of labour to clean, load, maintain and run. They also require extensive service, coaling and watering facilities. And this was their biggest inferior measure as compared to the Diesel locomotive in the number of ton-miles or passenger traffic miles run per steam locomotive, vs. diesel locomotives. Diesels could and did have a significantly higher initial price per unit-horsepower delivered. However their far greater range between fueling stops; the absence of water stops; the much higher unit availability between inspection repair and maintenance stops, were orders of magnitude better than steam. Diesels simply required significantly less time and labour to operate and maintain. Initially, diesel locomotives were less powerful than the largest steam locomotives, limiting train sizes or speeds, although the gap was closed somewhat by the introduction of larger diesel-electric locomotives such as the Deltic class. Electric locomotives can be vastly more powerful than either steam or diesel ones.

North America

The small initial market for Diesels was created by the State of New York's Kaufman Act of 1923, which prohibited operating steam locomotives in New York City and adjacent towns. Mainline passenger railroads had already been electrified, or their electrification had been planned regardless of Kaufman Act. Electrification of numerous freight yards was uneconomical, and railroads turned to Diesels. The first ALCO boxcab switcher was put in operation in 1925 by Central Railroad of New Jersey at its 138th Street waterfront terminal in The Bronx. The second was delivered in the same year to Baltimore and Ohio Railroad's yards on Manhattan. Both worked into the late 1950s and survive in museums to date.

Dieselization got a boost in the early 1930s from three factors: the development by General Motors and its Winton Engine Company subsidiary of Diesel engines with vastly improved power-to-weight ratios and output flexibility; the desire of railways to find more cost-efficient locomotion for passenger service at the height of the Great Depression; and design innovations in rail equipment that reduced weight, making the contemporary Diesel engines, which were low-powered by today's standards, viable for mainline passenger service. The mid-1930s saw the introduction of lightweight Diesel-powered streamlined trainsets such as the Burlington Route's Zephyrs and Union Pacific's M-1000x "City" trains, which were Diesel's first assault against the dominance of steam in mainline passenger service. During the second half of the decade, Diesel locomotives with sufficient power for full-size passenger trains were developed and put into regular production. Improved GM Diesel engines in 1938 increased power and reliability. Dieselization of passenger service gained momentum as the decade drew to a close and the first model of mainline Diesel freight locomotive was on the market in 1940. Dieselization was especially attractive to western railroads, for whom the watering requirements of steam locomotives were a problem in vast stretches of the western interior. Coal-country railroads were generally reluctant to embrace Diesel, a competitor to one of their main hauling markets, well into the 1940s.

Competition from Diesel spurred a round of development in steam locomotive technology. High style, high speed "steamliners" produced during the second half of the 1930s became the speed kings of passenger service. Duplex locomotive and articulated steam locomotives built in the early 1940s were the most powerful locomotives ever built. But the limits of steam technology were rapidly being reached. The new locomotives were mechanically complex and extremely specialized. Locomotive size became an issue, as steam engines became so big in the 1940s that the cylinder and boiler dimensions were pushing the limits that the loading gauge would allow. Fireboxes became so big that firing a steam locomotive became an extremely difficult job without the aid of mechanical stokers. Mechanical stokers for feeding coal to locomotives were in use in the 1920s.

Weighing against the cost of, and inertia against, replacing the large investment that railroads had in existing steam power were the dramatic increases in flexibility and efficiency with Diesel. The fastest and most powerful steam locomotives were faster and more powerful than Diesels, however, their range of efficient operation was severely limited. Diesels pro-rate their fuel usage to the length of trains, which a steam engine cannot do. Multiple-unit Diesel power is scalable to power requirements with one locomotive crew; steam power is not. A high speed Hudson steam locomotive is good for only one situation, high speeds on level grades. The Diesel locomotive can be operated by a single person, with no need of a fireman to shovel coal (two person cab crews may be required for other reasons). Also, Diesels use much less fuel and no manpower when idling, something locomotives often do. Diesels can be parked running for days unattended, whereas steam engines must be constantly tended to if not completely shut down. Bringing a steam engine boiler up to operating temperature is often regarded as both an art and science, requiring much training and experience. A Diesel starts and shuts down just like an automobile.

US entry into World War II interrupted Dieselization. The US Navy gained priority for Diesel engines, curtailing their availability for railway use. No production of passenger locomotives was permitted by the War Production Board between September 1942 and February 1945. The petroleum crisis of 1942-43 made coal-fired steam more attractive, especially near the east coast. After the peak of the petroleum crisis and as wartime production of Diesel engines hit its stride, increasing production of freight Diesel locomotives was permitted. By the war's end, pent-up demand to replace dated and worn-out railway equipment was overwhelming.

The market share of steam locomotives dropped from 30% in 1945 to 2% in 1948. The drop was most precipitous in passenger service, where modernization of equipment was imperative for image and cost reasons. Retired equipment pressed into service during the war years left a lasting impression on millions of servicemen who sometimes spent extended periods in obsolete, uncomfortable cars in obscure locations. Railroads were facing increasingly stiff competition for passenger service from airplanes and the automobile and the cost-cutting imperatives with passenger service were severe.

General Motors signed proprietary contracts with the major railroads, who were replacing their worn out wartime equipment with Diesels. With the GM contracts came articles that GM would supply training, facilities and maintenance, while the railroads would scrap their steam engines and remove them from competition.

Due to the advantages of Diesel locomotives, railroads in North America had retired 90% of their steam locomotives by the mid 1950s." Also, major cities and their railyards became unhappy neighbors in post-war America. People were no longer content to endure the large amounts of soot and smoke that coal burning steam engines produced. Early Diesels, while dirty by today's standards, were a gigantic improvement in air pollution over steam.

Steam engines lasted well into the late 1950s on major American railroads, and in isolated cases into the middle 1960s on small common carrier roads, primarily for yard duties such as switching. The last steam locomotive fleet in everyday use (i.e. not a restored fleet) was retired in the late 1970s. Now they are only found in historical and sightseeing roles, where the steam engine is once again the star of the show. Retired steam engines, many of which were quite new when made obsolete, often found a second life in developing nations due to their cheap labor for maintenance and crewing, ready supplies of coal, and lack of environmental concern.

Europe

As the rail lines in Europe are primarily designed for moving passenger (as opposed to freight) the trend in Europe was to replace steam traction in the main lines with electric traction, with the exceptions of the United Kingdom, Ireland and Albania. Diesels were used as an interim solution during electrification and as a permanent solution for secondary lines with less traffic and as switchers. Electrification is nowadays widespread in Europe. As of 2015, the railways in Albania and Ireland (with the exception of the electrified Dublin Area Rapid Transit) remain entirely diesel operated. Even in sparsely populated large countries (Finland, Sweden) electrification has proven to be more economical than diesels. Some countries, most notably Switzerland have electrified their whole network.

Japan

The majority of Japan's rail network had been electrified in the post-war years. In spite of this, more desolate railway lines, particularly on the northern island of Hokkaido continued to use surplus steam locomotives well into the mid-1970s. This was due to the limits and problems created by the then-nationalized rail network, Japanese National Railways (JNR). Japan also has large coal deposits as a natural resource. By 1970, most, if not all steam locomotives had been relegated to freight work, and by the time that complete dieselisation occurred, the remaining steam locomotives were used for branch line work and shunting duties.

India

The last broad gauge (5' 6") steam locomotive built by CLW was a WG class locomotive named Antim Sitara (The last star), #10560, built in June 1970. The last meter gauge steam locomotive was a YG class built in 1972.

Diesel and electric locomotives started slowly replacing steam in 1950s. Steam was largely replaced in 1980s. The last scheduled steam operation was on 6th December 1995 on broad gauge. Last steam operation on meter gauge ended in 1999.

Two tourist lines, the Darjeeling Himalayan railway and the Nilgiri mountain railway have retained steam service along with diesel.

United Kingdom

The Great Western Railway introduced diesel railcars in the 1930s, but the first British mainline diesel locomotive was built by the LMS in 1947. Nationalisation of the railways took place in 1948; diesel locomotives were first introduced on a wide scale following the Modernisation Plan of 1955. Part of the plan was to save money another secret part was to limit the power of coal miners by changing locomotive power from coal and steam to oil and diesel. The last steam locomotive for British Rail was built in 1960 and named "Evening Star" (number 92220). Steam traction was withdrawn on British Rail in 1968 and largely replaced with diesel traction (with electrification on a minority of lines). Steam was finally eliminated on Northern Ireland Railways in 1970 and entirely replaced with diesel. Steam locomotives purchased from the Great Western Railway were utilized by London's Metropolitan lines for suburban traffic until 1971. Similar tank engines remained in minor industrial use into the early 1980s.

United States

This list is a sample of some of the more prominent railroad companies' diesel traction conversions.

  • Atchison, Topeka, and Santa Fe Railroad - Dieselization completed in 1957.
  • Atlantic Coast Line - Dieselization by 1954.
  • Baltimore and Ohio Railroad - First diesel purchased in 1928. Dieselization completed in 1958.
  • Bangor and Aroostoock Railroad - Steam traffic ended in 1953.
  • Boston and Maine Railroad - End of steam in 1956.
  • Central of Georgia - Steam fleet retired in 1953.
  • Central of New Jersey - Steam fleet retired in 1954.
  • Central of Vermont - Steam fleet retired by 1957.
  • Chesapeake and Ohio Railroad - Dieselization completed in 1956.
  • Chicago, Burlington and Quincy Railroad - first diesel 1934; dieselisation completed in 1960 (but see Colorado & Southern, below).
  • Chicago, Rock Island and Pacific Railroad - official dieselization date was September 16, 1953.
  • Clinchfield Railway - Steam phased out by 1955.
  • Colorado and Southern Railway - dieselization completed in 1962.
  • Crab Orchard and Egyptian Railway - Steam-using tourist line that added regular revenue freight service in 1977, dieselized 1986. Recognized by the AAR as the last US railroad of any kind to use steam locomotives in regular revenue service.
  • Delaware and Hudson Railway - Last steam in 1953.
  • Denver and Rio Grande Western Railroad - (Standard gauge lines) Dieselization completed in 1956.(Narrow gauge lines)- ended revenue operation in 1968, never dieselizing.
  • Delaware, Lackawanna, and Western Railroad - Dieselization completed by 1953.
  • Detroit and Mackinac Railroad - This line dieselized early, retiring the last of its steam locomotives in 1948.
  • Elgin, Joliet and Eastern Railway - first diesel 1937; dieselisation completed in May 1949
  • Florida East Coast Railway - Last steam locomotives removed from service in 1959.
  • Fort Worth and Denver Railroad - Last steam locomotives retired in 1960.
  • Frisco Railway - Steam fleet retired in 1952.
  • Grand Trunk Western Railway - One of the last railways in the US to dieselize, the Grand Trunk retired its last steam locomotives in 1961.
  • Great Northern Railway - dieselisation completed in 1957.
  • Great Western Railway - steam used at least to 1965, possibly 1967.
  • Great Western Sugar Company - last steam operation in 1983. Among the last industrial steam users in the US.
  • Gulf, Mobile, and Ohio Railroad - Steam phased out by 1951.
  • Illinois Central Railroad - dieselisation completed in 1959.
  • Milwaukee Road - last new steam 1944; dieselisation completed in 1957.
  • Kansas City Southern Railroad - Dieselization completed by 1951.
  • "The Katy" - Steam fleet retired in 1951.
  • Lehigh Valley Railway - Steam fleet retired in 1951.
  • Long Island Railroad - last steam, ex-PRR locomotives, ran in late 1955.
  • Louisville and Nashville Railroad - Steam fleet retired in 1953.
  • Maine Central Railroad - Last steam locomotives retired in 1954.
  • Missouri Pacific Railroad - Last steam locomotives in 1957.
  • Monon Railroad - dieselisation completed in 1949.
  • Monongahela Railroad - Last steam on the line in 1954.
  • New Haven Railroad - Dieselization completed in 1952, spurred on by steam restrictions in the vicinity of New York City.
  • New York Central Railroad - full-scale dieselization began in the late 1940s, final run of steam in regular service was in 1957.
  • New York, Susquehanna and Western Railway - Perhaps the first major railroad to dieselize, the "Susie-Q" had eliminated all of its steam locomotives in 1945.
  • Nickel Plate Road - The NKP was one of the last holdouts of the steam locomotive in America, retiring the last of its steam fleet in 1960.
  • Northern Pacific Railroad - Last steam on the Northern Pacific was in 1960.
  • Pennsylvania Railroad - last steam in regular operations was in 1957.
  • Pittsburgh and Lake Erie Railroad - This short but very important Class 1 railroad completed its dieselization program in 1953.
  • Norfolk and Western Railway - last new steam 1953, last US Class 1 railroad to dieselize, dieselization completed in 1964. After 1960, the Y Class locomotives were only steam engines on N&W roster.
  • Reading Railroad - Dieselization completed around 1954-55.
  • Seaboard Air Line Railroad - mainline traffic dieselized by 1953.
  • Southern Pacific Railroad - dieselisation completed in 1958.
  • Southern Railway - dieselisation completed in 1953.
  • Union Pacific Railroad - First diesel in 1934; last new steam in 1944; last passenger steam run 1958; dieselisation completed in 1959, however steam locomotive UP 844 was never retired, and UP 3985 reentered excursion service in 1981.
  • Virginian Railway - Fully dieselized in 1957.
  • Wabash Railway - Fully dieselized in 1957.
  • Western Maryland Railroad - dieselization on east of Hagerstown in 1949, end of steam system-wide in 1954.
  • Western Pacific Railroad - dieselisation completed in 1953 (last steam operated on subsidiary Tidewater Southern).
  • Europe

    In terms of road transport, diesel gained popularity first with commercial hauliers, throughout the later 20th century, and then with passenger car users, particularly from the 1970s onwards, once diesel engines became more refined and also more readily available in passenger cars. Diesel had by this point long been a popular choice for taxi operators and agricultural users.

    In Europe as a whole, Peugeot and Mercedes-Benz in particular developed reputations for passenger-car diesel engines, whilst VM Motori developed some significant motors for four-wheel drive vehicles.

    In London the famed "Hackney Carriage" taxi has long since been powered by a diesel engine. The high reliability, ease of driveability and excellent fuel efficiency of such an engine allows the taxis to carry many people for a lower cost than might otherwise be incurred through the use of conventional petrol engines.

    References

    Dieselisation Wikipedia