Rahul Sharma (Editor)

Dental pulp stem cells

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit

Dental pulp stem cells (DPSCs) are stem cells present in the dental pulp, the soft living tissue within teeth. They are multipotent, so they have the potential to differentiate into a variety of cell types. Other sources of dental stem cells are the dental follicle and the developed periodontal ligament.

Contents

A subpopulation of dental pulp stem cells has been described as human immature dental pulp stem cells (IDPSC). There are various studies where the importance of these cells and their regenerative capacity has been demonstrated. Through the addition of tissue-specific cytokines, differentiated cells were obtained in vitro from these cells, not only of mesenchymal linage but also of endodermal and ectodermal linage. Among them are the IPS, MAPCs cells.

Several publications have stressed the importance of the expression of pluripotentiality associated markers: the transcription factors Nanog, SOX2, Oct3/4, SSEA4, CD13, are indispensable for the stem cells to divide indefinitely without affecting their differentiation potential, i.e., maintaining their self-renovation capacity. The quantification of protein expression levels in these cells is very important in order to know their pluripotentiality level, as described in some publications.

Atari M et al., established a protocol for isolating and identifying the subpopulations of dental pulp pluripotent-like stem cells (DPPSC). These cells are SSEA4+, OCT3/4+, NANOG+, SOX2+, LIN28+, CD13+, CD105+, CD34-, CD45-, CD90+, CD29+, CD73+, STRO1+ and CD146-, and they show genetic stability in vitro based on genomic analysis with a newly described CGH technique.

DPPSCs were able to form both embryoid body-like structures (EBs) in vitro and teratoma-like structures that contained tissues derived from all three embryonic germ layers when injected in nude mice. DPPSCs can differentiate in vitro into tissues that have similar characteristics to mesoderm, endoderm and ectoderm layers.

Sodium metaphosphates

Sodium trimetaphosphate and sodium hexametaphosphate have been used to promote the growth, differentiation, and angiogenic potential of HDPCs. Results suggest that these metaphosphates may be candidates for dental pulp tissue engineering and regenerative endodontics.

Definition

Dental pulp is the soft living tissue inside a tooth. Stem cells are found inside the soft living tissue. Scientists have identified the mesenchymal type of stem cell inside dental pulp. This particular type of stem cell has the future potential to differentiate into a variety of other cell types including:

  • Myocardiocytes to repair damaged cardiac tissue following a heart attack
  • Neuronal to generate nerve and brain tissue
  • Myocytes to repair muscle
  • Osteocytes to generate bone
  • Chondrocytes to generate cartilage
  • Adipocytes to generate fat
  • Bone and tissue from the oral cavity.
  • History

  • 2000 First discovery of DPSCs reported by Dr. Songtao Shi of NIH
  • 2005 NIH announces discovery of DPSCs by Dr. Irina Kerkis
  • 2006 IDPSC Kerkis reported discovery of Immature Dental Pulp Stem Cells (IDPSC), a pluripotent sub-population of DPSC using dental pulp organ culture.
  • 2007 DPSC 1st animal studies begin for bone regeneration.
  • 2007 DPSC 1st animal studies begin for dental end uses.
  • 2008 DPSC 1st animal studies begin for heart therapies.
  • 2008 IDPSC 1st animal study began for muscular dystrophy therapies.
  • 2008 DPSC 1st animal studies begin for regenerating brain tissue.
  • 2008 DPSC 1st advanced animal study for bone grafting announced. Reconstruction of large size cranial bone defects in rats.
  • 2010 IDPSC 1st human trial for cornea replacement
  • References

    Dental pulp stem cells Wikipedia


    Similar Topics