Suvarna Garge (Editor)

DBFS

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
DBFS

Decibels relative to full scale (dBFS) is a unit of measurement for amplitude levels in digital systems, such as pulse-code modulation (PCM), which have a defined maximum peak level. The unit is similar to the units dBov and dBO.

Contents

The level of 0 dBFS is assigned to the maximum possible digital level. For example, a signal that reaches 50% of the maximum level has a level of −6 dBFS, which is 6 dB below full scale. Conventions differ for root mean square (RMS) measurements, but all peak measurements smaller than the maximum are negative levels.

A digital signal that does not contain any samples at 0 dBFS can still clip when converted to analog form due to the signal reconstruction process interpolating between samples. This can be prevented by careful digital-to-analog converter circuit design.

RMS levels

Since a peak measurement is not useful for qualifying the noise performance of a system, or measuring the loudness of an audio recording, for instance, RMS measurements are often used instead.

A potential for ambiguity exists when assigning a level on the dBFS scale to a waveform rather than to a specific amplitude, because some engineers follow the mathematical definition of RMS, which is −3 dB below the peak value, while others choose the reference level so that RMS and peak measurements of a sine wave produce the same result.

  • RMS: For the case in which the RMS value of a full-scale square wave is designated 0 dBFS, all possible dBFS measurements are negative numbers. A sine wave cannot exist at a larger RMS value than −3 dBFS without clipping by this convention. This definition is consistent with the ITU-T G.100.1 telephony unit dBov, which can be applied to both analog and digital systems. It is used in Sound Forge and Euphonix meters.
  • Peak: For the case in which the RMS value of a full-scale sine wave is designated 0 dBFS, a full-scale square wave would have an RMS of +3 dBFS. This is the definition specified in AES Standard AES17-1998 and IEC 61606 and used in Dorrough meters, Analog Devices and Wolfson digital microphone specs, etc.
  • Dynamic range

    The measured dynamic range of a digital system is the ratio of the full scale signal level to the RMS noise floor. The theoretical minimum noise floor is caused by quantization noise. This is usually modeled as a uniform random fluctuation between −1/2 LSB and +1/2 LSB. (Only certain signals produce uniform random fluctuations, so this model is typically, but not always, accurate.)

    As the dynamic range is measured relative to the RMS level of a full scale sine wave, the dynamic range and the level of this quantization noise in dBFS can both be estimated with the same formula (though with reversed sign):

    D R = S N R = 20 log 10 ( 2 n 3 2 ) 6.0206 n + 1.761

    The value of n equals the resolution of the system in bits or the resolution of the system minus 1 bit (the measure error). For example, a 16-bit system has a theoretical minimum noise floor of -98.09 dBFS relative to a full-scale sine wave:

    D R = S N R = 20 log 10 ( 2 16 3 2 ) 6.0206 16 + 1.761 98.09

    In any real converter, dither is added to the signal before sampling. This removes the effects of non-uniform quantization error, but increases the minimum noise floor.

    History

    The phrase "dB below full scale" has appeared in print since the 1950s, and the term "dBFS" has been used since 1977.

    Although the decibel (dB) is permitted for use alongside units of the International System of Units (SI), the dBFS is not.

    Analog levels

    dBFS is not defined for analog levels, according to standard AES-6id-2006. No single standard converts between digital and analog levels, mostly due to the differing capabilities of different equipment. The amount of oversampling also affects the conversion with values that are too low having significant error. The conversion level is chosen as the best compromise for the typical headroom and signal-to-noise levels of the equipment in question. Examples:

  • EBU R68 is used in most European countries, specifying +18 dBu at 0 dBFS
  • In Europe, the EBU recommend that -18 dBFS equates to the Alignment Level
  • European & UK calibration for Post & Film is −18 dBFS = 0 VU
  • UK broadcasters, Alignment Level is taken as 0 dBu (PPM4 or −4VU)
  • US installations use +24 dBu for 0 dBFS
  • American and Australian Post: −20 dBFS = 0 VU = +4 dBu
  • The American SMPTE standard defines −20 dBFS as the Alignment Level
  • In Japan, France and some other countries, converters may be calibrated for +22 dBu at 0 dBFS.
  • BBC spec: −18 dBFS = PPM "4" = 0 dBu
  • German ARD & studio PPM +6 dBu = −10 (−9) dBFS. +16 (+15)dBu = 0 dBFS. No VU.
  • Belgium VRT: 0 dB (VRT Ref.) = +6dBu ; -9dBFS = 0 dB (VRT Ref.) ; 0dBFS = +15dBu.
  • References

    DBFS Wikipedia