Girish Mahajan (Editor)

Creatine transporter defect

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
OMIM
  
300352

DiseasesDB
  
34691

Creatine transporter defect

GeneReviews
  
Creatine Deficiency Syndromes

Creatine transporter defect (CTD) is an inborn error of creatine metabolism in which creatine is not properly transported to the brain and muscles due to defective creatine transporters. CTD is an X-linked disorder caused by mutations in the SLC6A8 gene. The SLC6A8 gene is located on the short arm of the sex chromosome, Xq28. Hemizygous males with CTD express speech and behavior abnormalities, intellectual disabilities, development delay, seizures, and autistic behavior. Heterozygous females with CTD generally express fewer, less severe symptoms. CTD is one of three different types of cerebral creatine deficiency (CCD). The other two types of CCD are guanidinoacetate methyltransferase (GAMT) deficiency and L-arginine:glycine amidinotransferase (AGAT) deficiency. Clinical presentation of CTD is similar to that of GAMT and AGAT deficiency. CTD was first identified in 2001 with the presence of a hemizygous nonsense mutation in the SLC6A8 gene in a male patient.

Contents

Background

The creatine phosphate system is needed for the storage and transmission of phosphate-bound energy in the brain and muscle. The brain and muscle have particularly high metabolic demands, therefore, making creatine a necessary molecule in ATP homeostasis. In regard to the brain, in order for creatine to reach the brain, it must first pass through the blood–brain barrier (BBB). The BBB separates blood from brain interstitial fluid and is, therefore, able to regulate the transfer of nutrients to the brain from the blood. In order to pass through the BBB, creatine utilizes creatine transporter (CRT). When present at the BBB, CRT mediates the passage of creatine from the blood to the brain. When being transported from the blood to the brain, creatine has to constantly move against the creatine concentration gradient that is present at the border between the brain and circulating blood.

Signs and Symptoms

Generally, the majority of individuals with creatine transporter defect express the following symptoms with varying levels of severity: developmental delay and regression, mental retardation, and abnormalities in expressive and cognitive speech. However, several studies have shown a wider variety of symptoms including, but not limited to attention deficit and hyperactivity with impulsivity, myopathy, hypotonia, semantic-pragmatic language disorder, oral dyspraxia, extrapyramidal movement disorder, constipation, absent speech development, seizures, and epilepsy. Furthermore, symptoms can significantly vary between hemizygous males and heterozygous females, although, symptoms are generally more severe in hemizygous males. Hemizygous males more commonly express seizures, growth deficiency, severe mental retardation, and severe expressive language impairment. Heterozygous females more commonly express mild retardation, impairments to confrontational naming and verbal memory, and learning and behavior problems.

Diagnosis

The diagnosis of CTD is usually suspected based on the clinical presentation of mental retardation, abnormalities in cognitive and expressive speech, and developmental delay. Furthermore, a family history of X-linked intellectual disability, developmental coordination disorder, and seizures is strongly suggestive. Initial screening of CTD involves obtaining a urine sample and measuring the ratio of creatine to creatinine. If the ratio of creatine to creatinine is greater than 1.5, then the presence of CTD is highly likely. This is because a large ratio indicates a high amount of creatine in the urine. This, in turn, indicates inadequate transport of creatine into the brain and muscle. However, the urine screening test often fails in diagnosing heterozygous females. Studies have demonstrated that as a group heterozygous females have significantly decreased cerebral creatine concentration, but that individual heterozygous females often have normal creatine concentrations found in their urine. Therefore, urine screening tests are unreliable as a standard test for diagnosing CTD.

A more reliable and sophisticated manner of testing for cerebral creatine concentrations is through in vivo proton magnetic resonance spectroscopy (1H MRS). In vivo 1H MRS uses proton signals to determine the concentration of specific metabolites. This method of testing is more reliable because it provides a fairly accurate measurement of the amount of creatine inside the brain. Similar to urine testing, a drawback of using 1H MRS as a test for CTD is that the results of the test could be attributed to any of the cerebral creatine deficiencies. The most accurate and reliable method of testing for CTD is through DNA sequence analysis of the SLC6A8 gene. DNA analysis of SLC6A8 allows the identification of the location and type of mutation causing the cerebral creatine deficiency. Furthermore, DNA analysis of SLC6A8 is able to prove that a cerebral creatine deficiency is due to CTD and not GAMT or AGAT deficiency.

Treatment

CTD is difficult to treat because the actual transporter responsible for transporting creatine to the brain and muscles is defective. Studies in which oral creatine supplements were given to patients with CTD found that patients did not respond to treatment. However, similar studies conducted in which patients that had GAMT or AGAT deficiency were given oral creatine supplements found that patient’s clinical symptoms improved. Patients with CTD are unresponsive to oral creatine supplements because regardless of the amount of creatine they ingest, the creatine transporter is still defective, and therefore creatine is incapable of being transported across the BBB. Given the major role that the BBB has in the transport of creatine to the brain and unresponsiveness of oral creatine supplements in CTD patients, future research will focus on working with the BBB to deliver creatine supplements. However, given the limited amount of patients that have been identified with CTD, future treatment strategies must be more effective and efficient when recognizing individuals with CTD.

Genetics

CTD is caused by mutations in the SLC6A8 gene, located at Xq28. The SLC6A8 gene contains 13 exons and spreads across 8.5 kb of genomic DNA (gDNA). The presence of hemizygous mutations in males and heterozygous mutations in females on the SLC6A8 gene provides evidence that CTD is inherited in an X-linked recessive manner. This usually results in hemizygous males having severe symptoms, while heterozygous female carriers tend to have less severe and more varying symptoms.

References

Creatine transporter defect Wikipedia