Supriya Ghosh (Editor)

Cosmic ray observatory

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
Cosmic-ray observatory

A cosmic-ray observatory is a scientific installation built to detect high-energy-particles coming from space called cosmic rays. This typically includes photons (high-energy light), electrons, protons, and some heavier nuclei, as well as antimatter particles. About 90% of cosmic rays are protons, 9% are alpha particles, and the rest are other particles

Contents

It is not yet possible to build image forming optics for cosmic rays, like a Wolter telescope for lower energy X-rays, although some cosmic-ray observatories also look for high energy gamma rays and x-rays. Ultra-high-energy cosmic rays (UHEC) pose further detection problems. One way of learning about cosmic rays is using different detectors to observe aspects of a cosmic ray air shower.

Methods of detection for Gamma-rays.

  • Scintillation Detectors
  • Solid State Detectors
  • Compton Scattering
  • Pair Telescopes
  • Air Cerenkov Detectors
  • For example, while a visible light photon may have an energy of a few eV, a cosmic gamma ray may exceed a TeV (1,000,000,000,000 eV). Sometimes cosmic gamma rays (photons) are not grouped with nuclei cosmic rays.

    History

    "In 1952, a simple and audacious experiment allowed the first observation of Cherenkov light produced by cosmic rays passing through the atmosphere, giving birth to a new field of astronomy". This work, involving minimal instrument expense (laughably a dustbin, a war-surplus parabolic mirror, and a 5 cm diameter photomultiplier tube), and based on a suggestion by Patrick Blackett, led ultimately to our current international multibillion-dollar investment in gamma ray astronomy.

    The Explorer 1 satellite launched in 1958 subsequently measured cosmic rays. Anton 314 omnidirectional Geiger-Müller tube, designed by George H. Ludwig of the State University of Iowa Cosmic Ray Laboratory, detected cosmic rays. It could detect protons with E > 30 MeV and electrons with E > 3 MeV. Most of the time the instrument was saturated;

    Sometimes the instrumentation would report the expected cosmic ray count (approximately thirty counts per second) but sometimes it would show a peculiar zero counts per second. The University of Iowa (under Van Allen) noted that all of the zero counts per second reports were from an altitude of 2,000+ km (1,250+ miles) over South America, while passes at 500 km (310 mi) would show the expected level of cosmic rays. Later, after Explorer 3, it was concluded that the original Geiger counter had been overwhelmed ("saturated") by strong radiation coming from a belt of charged particles trapped in space by the Earth's magnetic field. This belt of charged particles is now known as the Van Allen radiation belt.

    Cosmic rays were studied aboard the space station Mir in the late 20th century, such as with the SilEye experiment. This studied the relationship between flashes seen by astronauts in space and cosmic rays, the cosmic ray visual phenomena.

    Observatories and experiments

    There are a number of cosmic ray research initiatives. These include, but are not limited to:

  • Ground based
  • ALBORZ Observatory
  • ERGO
  • CHICOS
  • GAMMA
  • High Energy Stereoscopic System
  • High Resolution Fly's Eye Cosmic Ray Detector
  • MAGIC (telescope)
  • MARIACHI
  • Pierre Auger Observatory
  • Telescope Array Project
  • WALTA (Washington Large Area Time Coincidence Array)
  • TACTIC [1]
  • Satellite based
  • PAMELA
  • Alpha Magnetic Spectrometer
  • Spaceship Earth
  • ACE (Advanced Composition Explorer)
  • Voyager 1 and Voyager 2
  • Cassini-Huygens
  • HEAO 1, Einstein Observatory (HEAO2), HEAO 3
  • Balloon-borne
  • BESS (Balloon-borne Experiment with Superconducting Spectrometer)
  • ATIC (Advanced Thin Ionization Calorimeter)
  • TRACER (cosmic ray detector)
  • BOOMERanG experiment
  • TIGER [2]
  • Cosmic Ray Energetics and Mass (CREAM)
  • AESOP (Anti-Electron Sub-Orbital Payload)
  • Ultra high energy cosmic rays

    Observatories for ultra-high-energy cosmic rays:

  • MARIACHI - Mixed Apparatus for Radar Investigation of Cosmic-rays of High Ionization located on Long Island, USA.
  • GRAPES-3 (Gamma Ray Astronomy PeV EnergieS 3rd establishment) is a project for cosmic ray study with air shower detector array and large area muon detectors at Ooty in southern India.
  • LOPES (telescope) - LOFAR PrototypE Station is located in Karlsruhe, Germany is part of the LOFAR project.
  • AGASA - Akeno Giant Air Shower Array in Japan
  • High Resolution Fly's Eye Cosmic Ray Detector (HiRes)
  • Yakutsk Extensive Air Shower Array
  • Pierre Auger Observatory
  • Extreme Universe Space Observatory
  • Telescope Array Project
  • Antarctic Impulse Transient Antenna (ANITA) detects ultra-high-energy cosmic neutrinos believed to be caused by ultra-high-energy cosmic rays
  • The COSMICi project at FAMU is developing technology for a distributed network of low-cost detectors for UHECR showers in collaboration with MARIACHI.
  • References

    Cosmic-ray observatory Wikipedia