![]() | ||
Continuum mechanics is a branch of mechanics that deals with the analysis of the kinematics and the mechanical behavior of materials modeled as a continuous mass rather than as discrete particles. The French mathematician Augustin-Louis Cauchy was the first to formulate such models in the 19th century. Research in the area continues till today.
Contents
- Explanation
- Concept of a continuum
- Car traffic is an introductory example
- Conservation derives a PDE
- Observation closes the problem
- Major areas
- Formulation of models
- Forces in a continuum
- Kinematics deformation and motion
- Lagrangian description
- Eulerian description
- Displacement field
- Governing equations
- Balance laws
- ClausiusDuhem inequality
- Applications
- References
Explanation
Modeling an object as a continuum assumes that the substance of the object completely fills the space it occupies. Modeling objects in this way ignores the fact that matter is made of atoms, and so is not continuous; however, on length scales much greater than that of inter-atomic distances, such models are highly accurate. Fundamental physical laws such as the conservation of mass, the conservation of momentum, and the conservation of energy may be applied to such models to derive differential equations describing the behavior of such objects, and some information about the particular material studied is added through constitutive relations.
Continuum mechanics deals with physical properties of solids and fluids which are independent of any particular coordinate system in which they are observed. These physical properties are then represented by tensors, which are mathematical objects that have the required property of being independent of coordinate system. These tensors can be expressed in coordinate systems for computational convenience.
Concept of a continuum
Materials, such as solids, liquids and gases, are composed of molecules separated by space. On a microscopic scale, materials have cracks and discontinuities. However, certain physical phenomena can be modeled assuming the materials exist as a continuum, meaning the matter in the body is continuously distributed and fills the entire region of space it occupies. A continuum is a body that can be continually sub-divided into infinitesimal elements with properties being those of the bulk material.
The validity of the continuum assumption may be verified by a theoretical analysis, in which either some clear periodicity is identified or statistical homogeneity and ergodicity of the microstructure exists. More specifically, the continuum hypothesis/assumption hinges on the concepts of a representative elementary volume and separation of scales based on the Hill–Mandel condition. This condition provides a link between an experimentalist's and a theoretician's viewpoint on constitutive equations (linear and nonlinear elastic/inelastic or coupled fields) as well as a way of spatial and statistical averaging of the microstructure.
When the separation of scales does not hold, or when one wants to establish a continuum of a finer resolution than that of the representative volume element (RVE) size, one employs a statistical volume element (SVE), which, in turn, leads to random continuum fields. The latter then provide a micromechanics basis for stochastic finite elements (SFE). The levels of SVE and RVE link continuum mechanics to statistical mechanics. The RVE may be assessed only in a limited way via experimental testing: when the constitutive response becomes spatially homogeneous.
Specifically for fluids, the Knudsen number is used to assess to what extent the approximation of continuity can be made.
Car traffic is an introductory example
Consider car traffic on a highway---with just one lane for simplicity. Somewhat surprisingly, and in a tribute to its effectiveness, continuum mechanics effectively models the movement of cars via a partial differential equation (PDE) for the density of cars. The familiarity of this situation empowers us to understand a little of the continuum-discrete dichotomy underlying continuum modelling in general.
To start modelling define that:
Conservation derives a PDE
Cars do not appear and disappear. Consider any group of cars: from the particular car at the back of the group located at
This integral being zero holds for all groups, that is, for all intervals
for all positions on the highway.
This conservation PDE applies not only to car traffic but also to fluids, solids, crowds, animals, plants, bushfires, financial traders, and so on.
Observation closes the problem
This PDE is one equation with two unknowns, so another equation is needed to form a well posed problem. Such an extra equation is typically needed in continuum mechanics and typically comes from experiments. For car traffic it is well established that cars typically travel at a speed depending upon density,
Thus the basic continuum model for car traffic is the PDE
for the car density
Major areas
An additional area of continuum mechanics comprises elastomeric foams, which exhibit a curious hyperbolic stress-strain relationship. The elastomer is a true continuum, but a homogeneous distribution of voids gives it unusual properties.
Formulation of models
Continuum mechanics models begin by assigning a region in three-dimensional Euclidean space to the material body
A particular particle within the body in a particular configuration is characterized by a position vector
where
This function needs to have various properties so that the model makes physical sense.
For the mathematical formulation of the model,
Forces in a continuum
Continuum mechanics deals with deformable bodies, as opposed to rigid bodies. A solid is a deformable body that possesses shear strength, sc. a solid can support shear forces (forces parallel to the material surface on which they act). Fluids, on the other hand, do not sustain shear forces. For the study of the mechanical behavior of solids and fluids these are assumed to be continuous bodies, which means that the matter fills the entire region of space it occupies, despite the fact that matter is made of atoms, has voids, and is discrete. Therefore, when continuum mechanics refers to a point or particle in a continuous body it does not describe a point in the interatomic space or an atomic particle, rather an idealized part of the body occupying that point.
Following the classical dynamics of Newton and Euler, the motion of a material body is produced by the action of externally applied forces which are assumed to be of two kinds: surface forces
Surface forces or contact forces, expressed as force per unit area, can act either on the bounding surface of the body, as a result of mechanical contact with other bodies, or on imaginary internal surfaces that bound portions of the body, as a result of the mechanical interaction between the parts of the body to either side of the surface (Euler-Cauchy's stress principle). When a body is acted upon by external contact forces, internal contact forces are then transmitted from point to point inside the body to balance their action, according to Newton's second law of motion of conservation of linear momentum and angular momentum (for continuous bodies these laws are called the Euler's equations of motion). The internal contact forces are related to the body's deformation through constitutive equations. The internal contact forces may be mathematically described by how they relate to the motion of the body, independent of the body's material makeup.
The distribution of internal contact forces throughout the volume of the body is assumed to be continuous. Therefore, there exists a contact force density or Cauchy traction field
Any differential area
where
The total contact force on the particular internal surface
In continuum mechanics a body is considered stress-free if the only forces present are those inter-atomic forces (ionic, metallic, and van der Waals forces) required to hold the body together and to keep its shape in the absence of all external influences, including gravitational attraction. Stresses generated during manufacture of the body to a specific configuration are also excluded when considering stresses in a body. Therefore, the stresses considered in continuum mechanics are only those produced by deformation of the body, sc. only relative changes in stress are considered, not the absolute values of stress.
Body forces are forces originating from sources outside of the body that act on the volume (or mass) of the body. Saying that body forces are due to outside sources implies that the interaction between different parts of the body (internal forces) are manifested through the contact forces alone. These forces arise from the presence of the body in force fields, e.g. gravitational field (gravitational forces) or electromagnetic field (electromagnetic forces), or from inertial forces when bodies are in motion. As the mass of a continuous body is assumed to be continuously distributed, any force originating from the mass is also continuously distributed. Thus, body forces are specified by vector fields which are assumed to be continuous over the entire volume of the body, i.e. acting on every point in it. Body forces are represented by a body force density
In the case of gravitational forces, the intensity of the force depends on, or is proportional to, the mass density
The total body force applied to a continuous body is expressed as
Body forces and contact forces acting on the body lead to corresponding moments of force (torques) relative to a given point. Thus, the total applied torque
In certain situations, not commonly considered in the analysis of the mechanical behavior of materials, it becomes necessary to include two other types of forces: these are body moments and couple stresses (surface couples, contact torques). Body moments, or body couples, are moments per unit volume or per unit mass applied to the volume of the body. Couple stresses are moments per unit area applied on a surface. Both are important in the analysis of stress for a polarized dielectric solid under the action of an electric field, materials where the molecular structure is taken into consideration (e.g. bones), solids under the action of an external magnetic field, and the dislocation theory of metals.
Materials that exhibit body couples and couple stresses in addition to moments produced exclusively by forces are called polar materials. Non-polar materials are then those materials with only moments of forces. In the classical branches of continuum mechanics the development of the theory of stresses is based on non-polar materials.
Thus, the sum of all applied forces and torques (with respect to the origin of the coordinate system) in the body can be given by
Kinematics: deformation and motion
A change in the configuration of a continuum body results in a displacement. The displacement of a body has two components: a rigid-body displacement and a deformation. A rigid-body displacement consists of a simultaneous translation and rotation of the body without changing its shape or size. Deformation implies the change in shape and/or size of the body from an initial or undeformed configuration
The motion of a continuum body is a continuous time sequence of displacements. Thus, the material body will occupy different configurations at different times so that a particle occupies a series of points in space which describe a pathline.
There is continuity during deformation or motion of a continuum body in the sense that:
It is convenient to identify a reference configuration or initial condition which all subsequent configurations are referenced from. The reference configuration need not be one that the body will ever occupy. Often, the configuration at
When analyzing the deformation or motion of solids, or the flow of fluids, it is necessary to describe the sequence or evolution of configurations throughout time. One description for motion is made in terms of the material or referential coordinates, called material description or Lagrangian description.
Lagrangian description
In the Lagrangian description the position and physical properties of the particles are described in terms of the material or referential coordinates and time. In this case the reference configuration is the configuration at
In the Lagrangian description, the motion of a continuum body is expressed by the mapping function
which is a mapping of the initial configuration
Physical and kinematic properties
The material derivative of any property
In the Lagrangian description, the material derivative of
The instantaneous position
Similarly, the acceleration field is given by
Continuity in the Lagrangian description is expressed by the spatial and temporal continuity of the mapping from the reference configuration to the current configuration of the material points. All physical quantities characterizing the continuum are described this way. In this sense, the function
Eulerian description
Continuity allows for the inverse of
The Eulerian description, introduced by d'Alembert, focuses on the current configuration
Mathematically, the motion of a continuum using the Eulerian description is expressed by the mapping function
which provides a tracing of the particle which now occupies the position
A necessary and sufficient condition for this inverse function to exist is that the determinant of the Jacobian Matrix, often referred to simply as the Jacobian, should be different from zero. Thus,
In the Eulerian description, the physical properties
where the functional form of
The material derivative of
The first term on the right-hand side of this equation gives the local rate of change of the property
Continuity in the Eulerian description is expressed by the spatial and temporal continuity and continuous differentiability of the flow velocity field. All physical quantities are defined this way at each instant of time, in the current configuration, as a function of the vector position
Displacement field
The vector joining the positions of a particle
A displacement field is a vector field of all displacement vectors for all particles in the body, which relates the deformed configuration with the undeformed configuration. It is convenient to do the analysis of deformation or motion of a continuum body in terms of the displacement field, In general, the displacement field is expressed in terms of the material coordinates as
or in terms of the spatial coordinates as
where
and the relationship between
Knowing that
then
It is common to superimpose the coordinate systems for the undeformed and deformed configurations, which results in
Thus, we have
or in terms of the spatial coordinates as
Governing equations
Continuum mechanics deals with the behavior of materials that can be approximated as continuous for certain length and time scales. The equations that govern the mechanics of such materials include the balance laws for mass, momentum, and energy. Kinematic relations and constitutive equations are needed to complete the system of governing equations. Physical restrictions on the form of the constitutive relations can be applied by requiring that the second law of thermodynamics be satisfied under all conditions. In the continuum mechanics of solids, the second law of thermodynamics is satisfied if the Clausius–Duhem form of the entropy inequality is satisfied.
The balance laws express the idea that the rate of change of a quantity (mass, momentum, energy) in a volume must arise from three causes:
- the physical quantity itself flows through the surface that bounds the volume,
- there is a source of the physical quantity on the surface of the volume, or/and,
- there is a source of the physical quantity inside the volume.
Let
Let the motion of material points in the body be described by the map
where
The deformation gradient is given by
Balance laws
Let
Then, balance laws can be expressed in the general form
Note that the functions
If we take the Eulerian point of view, it can be shown that the balance laws of mass, momentum, and energy for a solid can be written as (assuming the source term is zero for the mass and angular momentum equations)
In the above equations
With respect to the reference configuration (the Lagrangian point of view), the balance laws can be written as
In the above,
We can alternatively define the nominal stress tensor
Then the balance laws become
The operators in the above equations are defined as such that
where
where
The inner product is defined as
Clausius–Duhem inequality
The Clausius–Duhem inequality can be used to express the second law of thermodynamics for elastic-plastic materials. This inequality is a statement concerning the irreversibility of natural processes, especially when energy dissipation is involved.
Just like in the balance laws in the previous section, we assume that there is a flux of a quantity, a source of the quantity, and an internal density of the quantity per unit mass. The quantity of interest in this case is the entropy. Thus, we assume that there is an entropy flux, an entropy source, and an internal entropy density per unit mass (
Let
Let
The scalar entropy flux can be related to the vector flux at the surface by the relation
where
We then have the Clausius–Duhem inequality in integral form:
We can show that the entropy inequality may be written in differential form as
In terms of the Cauchy stress and the internal energy, the Clausius–Duhem inequality may be written as