The Clausen function (of order 2) has simple zeros at all (integer) multiples of :                    π        ,                         since if :                    k        ∈                  Z                                 is an integer, :                    sin                k        π        =        0                
                              Cl                      2                                  (        m        π        )        =        0        ,                m        =        0        ,                ±        1        ,                ±        2        ,                ±        3        ,                ⋯                It has maxim at :                    θ        =                              π            3                          +        2        m        π                [        m        ∈                  Z                ]                
                              Cl                      2                                            (                                    π              3                                +          2          m          π          )                =        1.01494160        …                and minim at :                    θ        =        −                              π            3                          +        2        m        π                [        m        ∈                  Z                ]                
                              Cl                      2                                            (          −                                    π              3                                +          2          m          π          )                =        −        1.01494160        …                The following properties are immediate consequences of the series definition:
                              Cl                      2                                  (        θ        +        2        m        π        )        =                  Cl                      2                                  (        θ        )                                              Cl                      2                                  (        −        θ        )        =        −                  Cl                      2                                  (        θ        )                (Ref: See Lu and Perez, 1992, below for these results, although no proofs are given).
More generally, one defines the two generalized Clausen functions:
                              S                      z                                  (        θ        )        =                  ∑                      k            =            1                                ∞                                                              sin                            k              θ                                      k                              z                                                                                          C                      z                                  (        θ        )        =                  ∑                      k            =            1                                ∞                                                              cos                            k              θ                                      k                              z                                                            which are valid for complex z with Re z >1. The definition may be extended to all of the complex plane through analytic continuation.
When z is replaced with a non-negative integer, the Standard Clausen Functions are defined by the following Fourier series:
                              Cl                      2            m            +            2                                  (        θ        )        =                  ∑                      k            =            1                                ∞                                                              sin                            k              θ                                      k                              2                m                +                2                                                                                          Cl                      2            m            +            1                                  (        θ        )        =                  ∑                      k            =            1                                ∞                                                              cos                            k              θ                                      k                              2                m                +                1                                                                                          Sl                      2            m            +            2                                  (        θ        )        =                  ∑                      k            =            1                                ∞                                                              cos                            k              θ                                      k                              2                m                +                2                                                                                          Sl                      2            m            +            1                                  (        θ        )        =                  ∑                      k            =            1                                ∞                                                              sin                            k              θ                                      k                              2                m                +                1                                                            N.B. The SL-type Clausen functions have the alternative notation  :                              Gl                      m                                  (        θ        )                         and are sometimes referred to as the Glaisher–Clausen functions (after James Whitbread Lee Glaisher, hence the GL-notation).
The SL-type Clausen function are polynomials in                             θ                        , and are closely related to the Bernoulli polynomials. This connection is apparent from the Fourier series representations of the Bernoulli polynomials:
                              B                      2            n            −            1                          (        x        )        =                                            2              (              −              1                              )                                  n                                            (              2              n              −              1              )              !                                      (              2              π                              )                                  2                  n                  −                  1                                                                                      ∑                      k            =            1                                ∞                                                              sin                            2              π              k              x                                      k                              2                n                −                1                                                    .                                              B                      2            n                          (        x        )        =                                            2              (              −              1                              )                                  n                  −                  1                                            (              2              n              )              !                                      (              2              π                              )                                  2                  n                                                                                      ∑                      k            =            1                                ∞                                                              cos                            2              π              k              x                                      k                              2                n                                                    .                Setting                             x        =        θ                  /                2        π                         in the above, and then rearranging the terms gives the following closed form (polynomial) expressions:
                              Sl                      2            m                                  (        θ        )        =                                            (              −              1                              )                                  m                  −                  1                                            (              2              π                              )                                  2                  m                                                                    2              (              2              m              )              !                                                B                      2            m                                    (                                    θ                              2                π                                              )                ,                                              Sl                      2            m            −            1                                  (        θ        )        =                                            (              −              1                              )                                  m                                            (              2              π                              )                                  2                  m                  −                  1                                                                    2              (              2              m              −              1              )              !                                                B                      2            m            −            1                                    (                                    θ                              2                π                                              )                ,                where the Bernoulli polynomials                                       B                      n                          (        x        )                         are defined in terms of the Bernoulli numbers                                       B                      n                          ≡                  B                      n                          (        0        )                         by the relation:
                              B                      n                          (        x        )        =                  ∑                      j            =            0                                n                                                              (                                      n              j                                      )                                                B                      j                                    x                      n            −            j                          .                Explicit evaluations derived from the above include:
                              Sl                      1                                  (        θ        )        =                              π            2                          −                              θ            2                          ,                                              Sl                      2                                  (        θ        )        =                                            π                              2                                      6                          −                                            π              θ                        2                          +                                            θ                              2                                      4                          ,                                              Sl                      3                                  (        θ        )        =                                                            π                                  2                                            θ                        6                          −                                            π                              θ                                  2                                                      4                          +                                            θ                              3                                      12                          ,                                              Sl                      4                                  (        θ        )        =                                            π                              4                                      90                          −                                                            π                                  2                                                            θ                                  2                                                      12                          +                                            π                              θ                                  3                                                      12                          −                                            θ                              4                                      48                          .                For :                    0        <        θ        <        π                , the duplication formula can be proven directly from the Integral definition (see also Lu and Perez, 1992, below for the result – although no proof is given):
                              Cl                      2                                  (        2        θ        )        =        2                  Cl                      2                                  (        θ        )        −        2                  Cl                      2                                  (        π        −        θ        )                Immediate consequences of the duplication formula, along with use of the special value :                              Cl                      2                                            (                                    π              2                                )                =        G                , include the relations:
                              Cl                      2                                            (                                    π              4                                )                −                  Cl                      2                                            (                                                    3                π                            4                                )                =                              G            2                                                      2                  Cl                      2                                            (                                    π              3                                )                =        3                  Cl                      2                                            (                                                    2                π                            3                                )                        For higher order Clausen functions, duplication formulae can be obtained from the one given above; simply replace                             θ                         with the dummy variable                             x                        , and integrate over the interval                             [        0        ,        θ        ]        .                         Applying the same process repeatedly yields:
                              Cl                      3                                  (        2        θ        )        =        4                  Cl                      3                                  (        θ        )        +        4                  Cl                      3                                  (        π        −        θ        )                                              Cl                      4                                  (        2        θ        )        =        8                  Cl                      4                                  (        θ        )        −        8                  Cl                      4                                  (        π        −        θ        )                                              Cl                      5                                  (        2        θ        )        =        16                  Cl                      5                                  (        θ        )        +        16                  Cl                      5                                  (        π        −        θ        )                                              Cl                      6                                  (        2        θ        )        =        32                  Cl                      6                                  (        θ        )        −        32                  Cl                      6                                  (        π        −        θ        )                And more generally, upon induction on                             m        ,                        m        ≥        1                
                              Cl                      m            +            1                                  (        2        θ        )        =                  2                      m                                                [                                    Cl                      m            +            1                                  (        θ        )        +        (        −        1                  )                      m                                    Cl                      m            +            1                                  (        π        −        θ        )                              ]                                  Use of the generalized duplication formula allows for an extension of the result for the Clausen function of order 2, involving Catalan's constant. For                             m        ∈                  Z                ≥        1                        
                              Cl                      2            m                                            (                                    π              2                                )                =                  2                      2            m            −            1                                    [                      Cl                          2              m                                                      (                                                           p                                      i            4            )                    −                      Cl                          2              m                                                      (                                                            3                  π                                4                                      )                    ]                =        β        (        2        m        )                Where                             β        (        x        )                         is the Dirichlet beta function.
From the integral definition,
                              Cl                      2                                  (        2        θ        )        =        −                  ∫                      0                                2            θ                          log                                      |                          2        sin                                      x            2                                                |                                  d        x                Apply the duplication formula for the sine function, :                    sin                x        =        2        sin                                      x            2                          cos                                      x            2                                   to obtain
                                                                                                      −                                  ∫                                      0                                                        2                    θ                                                  log                                                                      |                                                                    (                  2                  sin                                                                              x                      4                                                        )                                                  (                  2                  cos                                                                              x                      4                                                        )                                                                      |                                                                  d                x                                                                    =                                                                                            −                                  ∫                                      0                                                        2                    θ                                                  log                                                                      |                                                  2                sin                                                                      x                    4                                                                                        |                                                                  d                x                −                                  ∫                                      0                                                        2                    θ                                                  log                                                                      |                                                  2                cos                                                                      x                    4                                                                                        |                                                                  d                x                                                            Apply the substitution                     x        =        2        y        ,        d        x        =        2                d        y                 on both integrals:
                                                                                                      −                2                                  ∫                                      0                                                        θ                                                  log                                                                      |                                                  2                sin                                                                      x                    2                                                                                        |                                                                  d                x                −                2                                  ∫                                      0                                                        θ                                                  log                                                                      |                                                  2                cos                                                                      x                    2                                                                                        |                                                                  d                x                                                                    =                                                                            2                                                  Cl                                      2                                                                  (                θ                )                −                2                                  ∫                                      0                                                        θ                                                  log                                                                      |                                                  2                cos                                                                      x                    2                                                                                        |                                                                  d                x                                                            On that last integral, set                     y        =        π        −        x        ,                x        =        π        −        y        ,                d        x        =        −        d        y                , and use the trigonometric identity                     cos                (        x        −        y        )        =        cos                x        cos                y        −        sin                x        sin                y                 to show that:
                                                                                      cos                                                  (                                                                                    π                        −                        y                                            2                                                        )                                =                sin                                                                      y                    2                                                                                                      ⟹                                                                              Cl                                      2                                                                  (                2                θ                )                =                2                                                  Cl                                      2                                                                  (                θ                )                −                2                                  ∫                                      0                                                        θ                                                  log                                                                      |                                                  2                cos                                                                      x                    2                                                                                        |                                                                  d                x                                                                    =                                                                            2                                                  Cl                                      2                                                                  (                θ                )                +                2                                  ∫                                      π                                                        π                    −                    θ                                                  log                                                                      |                                                  2                sin                                                                      y                    2                                                                                        |                                                                  d                y                                                                    =                                                                            2                                                  Cl                                      2                                                                  (                θ                )                −                2                                                  Cl                                      2                                                                  (                π                −                θ                )                +                2                                                  Cl                                      2                                                                  (                π                )                                                                                          Cl                      2                                  (        π        )        =        0                        Therefore,
                              Cl                      2                                  (        2        θ        )        =        2                          Cl                      2                                  (        θ        )        −        2                          Cl                      2                                  (        π        −        θ        )                .                ◻                Direct differentiation of the Fourier series expansions for the Clausen functions give:
                                          d                          d              θ                                                Cl                      2            m            +            2                                  (        θ        )        =                              d                          d              θ                                                ∑                      k            =            1                                ∞                                                              sin                            k              θ                                      k                              2                m                +                2                                                    =                  ∑                      k            =            1                                ∞                                                              cos                            k              θ                                      k                              2                m                +                1                                                    =                  Cl                      2            m            +            1                                  (        θ        )                                                          d                          d              θ                                                Cl                      2            m            +            1                                  (        θ        )        =                              d                          d              θ                                                ∑                      k            =            1                                ∞                                                              cos                            k              θ                                      k                              2                m                +                1                                                    =        −                  ∑                      k            =            1                                ∞                                                              sin                            k              θ                                      k                              2                m                                                    =        −                  Cl                      2            m                                  (        θ        )                                                          d                          d              θ                                                Sl                      2            m            +            2                                  (        θ        )        =                              d                          d              θ                                                ∑                      k            =            1                                ∞                                                              cos                            k              θ                                      k                              2                m                +                2                                                    =        −                  ∑                      k            =            1                                ∞                                                              sin                            k              θ                                      k                              2                m                +                1                                                    =        −                  Sl                      2            m            +            1                                  (        θ        )                                                          d                          d              θ                                                Sl                      2            m            +            1                                  (        θ        )        =                              d                          d              θ                                                ∑                      k            =            1                                ∞                                                              sin                            k              θ                                      k                              2                m                +                1                                                    =                  ∑                      k            =            1                                ∞                                                              cos                            k              θ                                      k                              2                m                                                    =                  Sl                      2            m                                  (        θ        )                By appealing to the First Fundamental Theorem Of Calculus, we also have:
                                          d                          d              θ                                                Cl                      2                                  (        θ        )        =                              d                          d              θ                                                [          −                      ∫                          0                                      θ                                log                                              |                                2          sin                                              x              2                                                          |                                          d          x                    ]                =        −        log                                      |                          2        sin                                      θ            2                                                |                          =                  Cl                      1                                  (        θ        )                The inverse tangent integral is defined on the interval :                    0        <        z        <        1                 by
                              Ti                      2                                  (        z        )        =                  ∫                      0                                z                                                                              tan                                  −                  1                                                          x                        x                                  d        x        =                  ∑                      k            =            0                                ∞                          (        −        1                  )                      k                                                              z                              2                k                +                1                                                    (              2              k              +              1                              )                                  2                                                                            It has the following closed form in terms of the Clausen Function:
                              Ti                      2                                  (        tan                θ        )        =        θ        log                (        tan                θ        )        +                              1            2                                    Cl                      2                                  (        2        θ        )        +                              1            2                                    Cl                      2                                  (        π        −        2        θ        )                From the integral definition of the inverse tangent integral, we have
                              Ti                      2                                  (        tan                θ        )        =                  ∫                      0                                tan                        θ                                                                              tan                                  −                  1                                                          x                        x                                  d        x                Performing an integration by parts
                              ∫                      0                                tan                        θ                                                                              tan                                  −                  1                                                          x                        x                                  d        x        =                  tan                      −            1                                  x        log                x                                                    |                                            0                                tan                        θ                          −                  ∫                      0                                tan                        θ                                                              log                            x                                      1              +                              x                                  2                                                                            d        x        =                                    θ        log                tan                θ        −                  ∫                      0                                tan                        θ                                                              log                            x                                      1              +                              x                                  2                                                                            d        x                Apply the substitution :                    x        =        tan                y        ,                y        =                  tan                      −            1                                  x        ,                d        y        =                                            d              x                                      1              +                              x                                  2                                                                                     to obtain
                    θ        log                tan                θ        −                  ∫                      0                                θ                          log                (        tan                y        )                d        y                For that last integral, apply the transform :                    y        =        x                  /                2        ,                d        y        =        d        x                  /                2                         to get
                                                                                      θ                log                                tan                                θ                −                                                      1                    2                                                                    ∫                                      0                                                        2                    θ                                                  log                                                  (                  tan                                                                              x                      2                                                        )                                                d                x                                                                    =                                                                            θ                log                                tan                                θ                −                                                      1                    2                                                                    ∫                                      0                                                        2                    θ                                                  log                                                  (                                                                                    sin                                                (                        x                                                  /                                                2                        )                                                                    cos                                                (                        x                                                  /                                                2                        )                                                                              )                                                d                x                                                                    =                                                                            θ                log                                tan                                θ                −                                                      1                    2                                                                    ∫                                      0                                                        2                    θ                                                  log                                                  (                                                                                    2                        sin                                                (                        x                                                  /                                                2                        )                                                                    2                        cos                                                (                        x                                                  /                                                2                        )                                                                              )                                                d                x                                                                    =                                                                            θ                log                                tan                                θ                −                                                      1                    2                                                                    ∫                                      0                                                        2                    θ                                                  log                                                  (                  2                  sin                                                                              x                      2                                                        )                                                d                x                +                                                      1                    2                                                                    ∫                                      0                                                        2                    θ                                                  log                                                  (                  2                  cos                                                                              x                      2                                                        )                                                d                x                                                                    =                                                                            θ                log                                tan                                θ                +                                                      1                    2                                                                    Cl                                      2                                                                  (                2                θ                )                +                                                      1                    2                                                                    ∫                                      0                                                        2                    θ                                                  log                                                  (                  2                  cos                                                                              x                      2                                                        )                                                d                x                .                                                            Finally, as with the proof of the Duplication formula, the substitution                     x        =        (        π        −        y        )                         reduces that last integral to
                              ∫                      0                                2            θ                          log                          (          2          cos                                              x              2                                )                        d        x        =                  Cl                      2                                  (        π        −        2        θ        )        −                  Cl                      2                                  (        π        )        =                  Cl                      2                                  (        π        −        2        θ        )                Thus
                              Ti                      2                                  (        tan                θ        )        =        θ        log                tan                θ        +                              1            2                                    Cl                      2                                  (        2        θ        )        +                              1            2                                    Cl                      2                                  (        π        −        2        θ        )                .                ◻                For real :                    0        <        z        <        1                , the Clausen function of second order can be expressed in terms of the Barnes G-function and (Euler) Gamma function:
                              Cl                      2                                  (        2        π        z        )        =        2        π        log                          (                                                    G                (                1                −                z                )                                            G                (                1                +                z                )                                              )                −        2        π        z        log                          (                                                    sin                                π                z                            π                                )                        Or equivalently
                              Cl                      2                                  (        2        π        z        )        =        2        π        log                          (                                                    G                (                1                −                z                )                                            G                (                z                )                                              )                −        2        π        log                Γ        (        z        )        −        2        π        log                          (                                                    sin                                π                z                            π                                )                        Ref: See Adamchik, "Contributions to the Theory of the Barnes function", below.
The Clausen functions represent the real and imaginary parts of the polylogarithm, on the unit circle:
                              Cl                      2            m                                  (        θ        )        =        ℑ        (                  Li                      2            m                                  (                  e                      i            θ                          )        )        ,                m        ∈                  Z                ≥        1                                              Cl                      2            m            +            1                                  (        θ        )        =        ℜ        (                  Li                      2            m            +            1                                  (                  e                      i            θ                          )        )        ,                m        ∈                  Z                ≥        0                This is easily seen by appealing to the series definition of the polylogarithm.
                              Li                      n                                  (        z        )        =                  ∑                      k            =            1                                ∞                                                              z                              k                                                    k                              n                                                            ⟹                  Li                      n                                            (                      e                          i              θ                                )                =                  ∑                      k            =            1                                ∞                                                                              (                                  e                                      i                    θ                                                  )                                            k                                                    k                              n                                                    =                  ∑                      k            =            1                                ∞                                                              e                              i                k                θ                                                    k                              n                                                            By Euler's theorem,
                              e                      i            θ                          =        cos                θ        +        i        sin                θ                and by de Moivre's Theorem (De Moivre's formula)
                    (        cos                θ        +        i        sin                θ                  )                      k                          =        cos                k        θ        +        i        sin                k        θ                ⇒                  Li                      n                                            (                      e                          i              θ                                )                =                  ∑                      k            =            1                                ∞                                                              cos                            k              θ                                      k                              n                                                    +        i                          ∑                      k            =            1                                ∞                                                              sin                            k              θ                                      k                              n                                                            Hence
                              Li                      2            m                                            (                      e                          i              θ                                )                =                  ∑                      k            =            1                                ∞                                                              cos                            k              θ                                      k                              2                m                                                    +        i                          ∑                      k            =            1                                ∞                                                              sin                            k              θ                                      k                              2                m                                                    =                  Sl                      2            m                                  (        θ        )        +        i                  Cl                      2            m                                  (        θ        )                                              Li                      2            m            +            1                                            (                      e                          i              θ                                )                =                  ∑                      k            =            1                                ∞                                                              cos                            k              θ                                      k                              2                m                +                1                                                    +        i                          ∑                      k            =            1                                ∞                                                              sin                            k              θ                                      k                              2                m                +                1                                                    =                  Cl                      2            m            +            1                                  (        θ        )        +        i                  Sl                      2            m            +            1                                  (        θ        )                The Clausen functions are intimately connected to the polygamma function. Indeed, it is possible to express Clausen functions as linear combinations of sine functions and polygamma functions. One such relation is shown here, and proven below:
                              Cl                      2            m                                            (                                                    q                π                            p                                )                =                              1                          (              2              p                              )                                  2                  m                                            (              2              m              −              1              )              !                                                        ∑                      j            =            1                                p                          sin                          (                                                                      q                  j                  π                                p                                              )                                  [                      ψ                          2              m              −              1                                            (                                                            j                                      2                    p                                                                        )                    +          (          −          1                      )                          q                                            ψ                          2              m              −              1                                            (                                                                                j                    +                    p                                                        2                    p                                                                        )                    ]                        Let                             p                         and                             q                         be positive integers, such that                             q                  /                p                         is a rational number                             0        <        q                  /                p        <        1                        , then, by the series definition for the higher order Clausen function (of even index):
                              Cl                      2            m                                            (                                                    q                π                            p                                )                =                  ∑                      k            =            1                                ∞                                                              sin                            (              k              q              π                              /                            p              )                                      k                              2                m                                                            We split this sum into exactly p-parts, so that the first series contains all, and only, those terms congruent to                             k        p        +        1        ,                         the second series contains all terms congruent to                             k        p        +        2        ,                         etc., up to the final p-th part, that contain all terms congruent to                             k        p        +        p                        
                                                                                                        Cl                                      2                    m                                                                                    (                                                                                    q                        π                                            p                                                        )                                                                                    =                                                                                                              ∑                                      k                    =                    0                                                        ∞                                                                                                              sin                                                                    [                        (                        k                        p                        +                        1                        )                                                                                                            q                              π                                                        p                                                                          ]                                                                                    (                      k                      p                      +                      1                                              )                                                  2                          m                                                                                                                    +                                  ∑                                      k                    =                    0                                                        ∞                                                                                                              sin                                                                    [                        (                        k                        p                        +                        2                        )                                                                                                            q                              π                                                        p                                                                          ]                                                                                    (                      k                      p                      +                      2                                              )                                                  2                          m                                                                                                                    +                                  ∑                                      k                    =                    0                                                        ∞                                                                                                              sin                                                                    [                        (                        k                        p                        +                        3                        )                                                                                                            q                              π                                                        p                                                                          ]                                                                                    (                      k                      p                      +                      3                                              )                                                  2                          m                                                                                                                    +                ⋯                                                                                                  ⋯                +                                  ∑                                      k                    =                    0                                                        ∞                                                                                                              sin                                                                    [                        (                        k                        p                        +                        p                        −                        2                        )                                                                                                            q                              π                                                        p                                                                          ]                                                                                    (                      k                      p                      +                      p                      −                      2                                              )                                                  2                          m                                                                                                                    +                                  ∑                                      k                    =                    0                                                        ∞                                                                                                              sin                                                                    [                        (                        k                        p                        +                        p                        −                        1                        )                                                                                                            q                              π                                                        p                                                                          ]                                                                                    (                      k                      p                      +                      p                      −                      1                                              )                                                  2                          m                                                                                                                    +                                  ∑                                      k                    =                    0                                                        ∞                                                                                                              sin                                                                    [                        (                        k                        p                        +                        p                        )                                                                                                            q                              π                                                        p                                                                          ]                                                                                    (                      k                      p                      +                      p                                              )                                                  2                          m                                                                                                                                                                We can index these sums to form a double sum:
                                                                                                        Cl                                      2                    m                                                                                    (                                                                                    q                        π                                            p                                                        )                                =                                  ∑                                      j                    =                    1                                                        p                                                                                        {                                                                    ∑                                      k                    =                    0                                                        ∞                                                                                                              sin                                                                    [                        (                        k                        p                        +                        j                        )                                                                                                            q                              π                                                        p                                                                          ]                                                                                    (                      k                      p                      +                      j                                              )                                                  2                          m                                                                                                                                                          }                                                                                                      =                                                                                                              ∑                                      j                    =                    1                                                        p                                                                                        1                                          p                                              2                        m                                                                                                                                  {                                                                    ∑                                      k                    =                    0                                                        ∞                                                                                                              sin                                                                    [                        (                        k                        p                        +                        j                        )                                                                                                            q                              π                                                        p                                                                          ]                                                                                    (                      k                      +                      (                      j                                              /                                            p                      )                                              )                                                  2                          m                                                                                                                                                          }                                                                                              Applying the addition formula for the sine function,                             sin                (        x        +        y        )        =        sin                x        cos                y        +        cos                x        sin                y        ,                         the sine term in the numerator becomes:
                    sin                          [          (          k          p          +          j          )                                                    q                π                            p                                ]                =        sin                          (          k          q          π          +                                                    q                j                π                            p                                )                =        sin                k        q        π        cos                                                    q              j              π                        p                          +        cos                k        q        π        sin                                                    q              j              π                        p                                                      sin                m        π        ≡        0        ,                        cos                m        π        ≡        (        −        1                  )                      m                                  ⟺        m        =        0        ,                ±        1        ,                ±        2        ,                ±        3        ,                …                                    sin                          [          (          k          p          +          j          )                                                    q                π                            p                                ]                =        (        −        1                  )                      k            q                          sin                                                    q              j              π                        p                                  Consequently,
                              Cl                      2            m                                            (                                                    q                π                            p                                )                =                  ∑                      j            =            1                                p                                                1                          p                              2                m                                                    sin                          (                                                    q                j                π                            p                                )                                              {                                    ∑                      k            =            0                                ∞                                                              (              −              1                              )                                  k                  q                                                                    (              k              +              (              j                              /                            p              )                              )                                  2                  m                                                                                          }                                  To convert the inner sum in the double sum into a non-alternating sum, split in two in parts in exactly the same way as the earlier sum was split into p-parts:
                                                                                                                        ∑                                      k                    =                    0                                                        ∞                                                                                                              (                      −                      1                                              )                                                  k                          q                                                                                                            (                      k                      +                      (                      j                                              /                                            p                      )                                              )                                                  2                          m                                                                                                                    =                                  ∑                                      k                    =                    0                                                        ∞                                                                                                              (                      −                      1                                              )                                                  (                          2                          k                          )                          q                                                                                                            (                      (                      2                      k                      )                      +                      (                      j                                              /                                            p                      )                                              )                                                  2                          m                                                                                                                    +                                  ∑                                      k                    =                    0                                                        ∞                                                                                                              (                      −                      1                                              )                                                  (                          2                          k                          +                          1                          )                          q                                                                                                            (                      (                      2                      k                      +                      1                      )                      +                      (                      j                                              /                                            p                      )                                              )                                                  2                          m                                                                                                                                                                        =                                                                                                              ∑                                      k                    =                    0                                                        ∞                                                                                        1                                          (                      2                      k                      +                      (                      j                                              /                                            p                      )                                              )                                                  2                          m                                                                                                                    +                (                −                1                                  )                                      q                                                                                    ∑                                      k                    =                    0                                                        ∞                                                                                        1                                          (                      2                      k                      +                      1                      +                      (                      j                                              /                                            p                      )                                              )                                                  2                          m                                                                                                                                                                        =                                                                                                                  1                                          2                                              p                                                                                                              [                                      ∑                                          k                      =                      0                                                              ∞                                                                                                  1                                              (                        k                        +                        (                        j                                                  /                                                2                        p                        )                                                  )                                                      2                            m                                                                                                                                +                  (                  −                  1                                      )                                          q                                                                                              ∑                                          k                      =                      0                                                              ∞                                                                                                  1                                              (                        k                        +                                                  (                                                                                                                    j                                +                                p                                                                                            2                                p                                                                                                              )                                                                          )                                                      2                            m                                                                                                                                ]                                                                            For                             m        ∈                  Z                ≥        1                        , the polygamma function has the series representation
                              ψ                      m                          (        z        )        =        (        −        1                  )                      m            +            1                          m        !                  ∑                      k            =            0                                ∞                                                1                          (              k              +              z                              )                                  m                  +                  1                                                                            So, in terms of the polygamma function, the previous inner sum becomes:
                                          1                                          2                                  2                  m                                            (              2              m              −              1              )              !                                                [                      ψ                          2              m              −              1                                            (                                                            j                                      2                    p                                                                        )                    +          (          −          1                      )                          q                                            ψ                          2              m              −              1                                            (                                                                                j                    +                    p                                                        2                    p                                                                        )                    ]                        Plugging this back into the double sum gives the desired result:
                              Cl                      2            m                                            (                                                    q                π                            p                                )                =                              1                          (              2              p                              )                                  2                  m                                            (              2              m              −              1              )              !                                                        ∑                      j            =            1                                p                          sin                          (                                                                      q                  j                  π                                p                                              )                                  [                      ψ                          2              m              −              1                                            (                                                            j                                      2                    p                                                                        )                    +          (          −          1                      )                          q                                            ψ                          2              m              −              1                                            (                                                                                j                    +                    p                                                        2                    p                                                                        )                    ]                        The generalized logsine integral is defined by:
                                          L                                    s                      n                                m                          (        θ        )        =        −                  ∫                      0                                θ                                    x                      m                                    log                      n            −            m            −            1                                                        |                          2        sin                                      x            2                                                |                                  d        x                In this generalized notation, the Clausen function can be expressed in the form:
                              Cl                      2                                  (        θ        )        =                              L                                    s                      2                                0                          (        θ        )                Ernst Kummer and Rogers give the relation
                              Li                      2                                  (                  e                      i            θ                          )        =        ζ        (        2        )        −        θ        (        2        π        −        θ        )                  /                4        +        i                  Cl                      2                                  (        θ        )                valid for                     0        ≤        θ        ≤        2        π                .
The Lobachevsky function Λ or Л is essentially the same function with a change of variable:
                    Λ        (        θ        )        =        −                  ∫                      0                                θ                          log                          |                2        sin                (        t        )                  |                        d        t        =                  Cl                      2                                  (        2        θ        )                  /                2                though the name "Lobachevsky function" is not quite historically accurate, as Lobachevsky's formulas for hyperbolic volume used the slightly different function
                              ∫                      0                                θ                          log                          |                sec                (        t        )                  |                        d        t        =        Λ        (        θ        +        π                  /                2        )        +        θ        log                2.                For rational values of                     θ                  /                π                 (that is, for                     θ                  /                π        =        p                  /                q                 for some integers p and q), the function                     sin                (        n        θ        )                 can be understood to represent a periodic orbit of an element in the cyclic group, and thus                               Cl                      s                                  (        θ        )                 can be expressed as a simple sum involving the Hurwitz zeta function. This allows relations between certain Dirichlet L-functions to be easily computed.
A series acceleration for the Clausen function is given by
                                                                        Cl                                  2                                                          (              θ              )                        θ                          =        1        −        log                          |                θ                  |                +                  ∑                      n            =            1                                ∞                                                              ζ              (              2              n              )                                      n              (              2              n              +              1              )                                                            (                                          θ                                  2                  π                                                      )                                2            n                                  which holds for                               |                θ                  |                <        2        π                . Here,                     ζ        (        s        )                 is the Riemann zeta function. A more rapidly convergent form is given by
                                                                        Cl                                  2                                                          (              θ              )                        θ                          =        3        −        log                          [                      |                    θ                      |                                (            1            −                                                            θ                                      2                                                                    4                                      π                                          2                                                                                            )                    ]                −                                            2              π                        θ                          log                          (                                                    2                π                +                θ                                            2                π                −                θ                                              )                +                  ∑                      n            =            1                                ∞                                                              ζ              (              2              n              )              −              1                                      n              (              2              n              +              1              )                                                            (                                          θ                                  2                  π                                                      )                                n                          .                Convergence is aided by the fact that                     ζ        (        n        )        −        1                 approaches zero rapidly for large values of n. Both forms are obtainable through the types of resummation techniques used to obtain rational zeta series. (ref. Borwein, et al., 2000, below).
Some special values include
                              Cl                      2                                            (                                    π              2                                )                =        G                                              Cl                      2                                            (                                    π              3                                )                =        3        π        log                          (                                                    G                                  (                                                            2                      3                                                        )                                                            G                                  (                                                            1                      3                                                        )                                                              )                −        3        π        log                Γ                  (                                    1              3                                )                +        π        log                          (                                                    2                π                                            3                                              )                                                      Cl                      2                                            (                                                    2                π                            3                                )                =        2        π        log                          (                                                    G                                  (                                                            2                      3                                                        )                                                            G                                  (                                                            1                      3                                                        )                                                              )                −        2        π        log                Γ                  (                                    1              3                                )                +                                            2              π                        3                          log                          (                                                    2                π                                            3                                              )                                                      Cl                      2                                            (                                    π              4                                )                =        2        π        log                          (                                                    G                                  (                                                            7                      8                                                        )                                                            G                                  (                                                            1                      8                                                        )                                                              )                −        2        π        log                Γ                  (                                    1              8                                )                +                              π            4                          log                          (                                                    2                π                                            2                −                                                      2                                                                                )                                                      Cl                      2                                            (                                                    3                π                            4                                )                =        2        π        log                          (                                                    G                                  (                                                            5                      8                                                        )                                                            G                                  (                                                            3                      8                                                        )                                                              )                −        2        π        log                Γ                  (                                    3              8                                )                +                                            3              π                        4                          log                          (                                                    2                π                                            2                +                                                      2                                                                                )                                                      Cl                      2                                            (                                    π              6                                )                =        2        π        log                          (                                                    G                                  (                                                            11                      12                                                        )                                                            G                                  (                                                            1                      12                                                        )                                                              )                −        2        π        log                Γ                  (                                    1              12                                )                +                              π            6                          log                          (                                                    2                π                                                      2                                                                                                                    3                                                  −                1                                              )                                                      Cl                      2                                            (                                                    5                π                            6                                )                =        2        π        log                          (                                                    G                                  (                                                            7                      12                                                        )                                                            G                                  (                                                            5                      12                                                        )                                                              )                −        2        π        log                Γ                  (                                    5              12                                )                +                                            5              π                        6                          log                          (                                                    2                π                                                      2                                                                                                                    3                                                  +                1                                              )                        Some special values for higher order Clausen functions include
                              Cl                      2            m                                  t        (        0        )        =                  Cl                      2            m                                  (        π        )        =                  Cl                      2            m                                  (        2        π        )        =        0                                              Cl                      2            m                                            (                                    π              2                                )                =        β        (        2        m        )                                              Cl                      2            m            +            1                                  (        0        )        =                  Cl                      2            m            +            1                                  (        2        π        )        =        ζ        (        2        m        +        1        )                                              Cl                      2            m            +            1                                  (        π        )        =        −        η        (        2        m        +        1        )        =        −                  (                                                                      2                                      2                    m                                                  −                1                                            2                                  2                  m                                                              )                ζ        (        2        m        +        1        )                                              Cl                      2            m            +            1                                            (                                    π              2                                )                =        −                              1                          2                              2                m                +                1                                                    η        (        2        m        +        1        )        =        −                  (                                                                      2                                      2                    m                                                  −                1                                            2                                  4                  m                  +                  1                                                              )                ζ        (        2        m        +        1        )                where :                    G        =        β        (        2        )                 is Catalan's constant, :                    β        (        x        )                 is the Dirichlet beta function, :                    η        (        x        )                 is the eta function (also called the alternating zeta function), and :                    ζ        (        x        )                 is the Riemann zeta function.
                    β        (        x        )        =                  ∑                      k            =            0                                ∞                                                              (              −              1                              )                                  k                                                                    (              2              k              +              1                              )                                  x                                                                            The following integrals are easily proven from the series representations of the Clausen function:
                              ∫                      0                                θ                                    Cl                      2            m                                  (        x        )                d        x        =        ζ        (        2        m        +        1        )        −                  Cl                      2            m            +            1                                  (        θ        )                                              ∫                      0                                θ                                    Cl                      2            m            +            1                                  (        x        )                d        x        =                  Cl                      2            m            +            2                                  (        θ        )                                              ∫                      0                                θ                                    Sl                      2            m                                  (        x        )                d        x        =                  Sl                      2            m            +            1                                  (        θ        )                                              ∫                      0                                θ                                    Sl                      2            m            +            1                                  (        x        )                d        x        =        ζ        (        2        m        +        2        )        −                  Cl                      2            m            +            2                                  (        θ        )                A large number of trigonometric and logarithmo-trigonometric integrals can be evaluated in terms of the Clausen function, and various common mathematical constants like                             G                         (Catalan's constant),                             log                2                        , and the special cases of the zeta function,                             ζ        (        2        )                         and                             ζ        (        3        )                        .
The examples listed below follow directly from the integral representation of the Clausen function, and the proofs require little more than basic trigonometry, integration by parts, and occasional term-by-term integration of the Fourier series definitions of the Clausen functions.
                              ∫                      0                                θ                          log                (        sin                x        )                d        x        =        −                                            1              2                                                Cl                      2                                  (        2        θ        )        −        θ        log                2                                              ∫                      0                                θ                          log                (        cos                x        )                d        x        =                                            1              2                                                Cl                      2                                  (        π        −        2        θ        )        −        θ        log                2                                              ∫                      0                                θ                          log                (        tan                x        )                d        x        =        −                                            1              2                                                Cl                      2                                  (        2        θ        )        −                                            1              2                                                Cl                      2                                  (        π        −        2        θ        )                                              ∫                      0                                θ                          log                (        1        +        cos                x        )                d        x        =        2                  Cl                      2                                  (        π        −        θ        )        −        θ        log                2                                              ∫                      0                                θ                          log                (        1        −        cos                x        )                d        x        =        −        2                  Cl                      2                                  (        θ        )        −        θ        log                2                                              ∫                      0                                θ                          log                (        1        +        sin                x        )                d        x        =        2        G        −        2                  Cl                      2                                            (                                    π              2                                +          θ          )                −        θ        log                2                                              ∫                      0                                θ                          log                (        1        −        sin                x        )                d        x        =        −        2        G        +        2                  Cl                      2                                            (                                    π              2                                −          θ          )                −        θ        log                2