In mathematics, the classifying space for the unitary group U(n) is a space BU(n) together with a universal bundle EU(n) such that any hermitian bundle on a paracompact space X is the pull-back of EU(n) by a map X → BU(n) unique up to homotopy.
Contents
- Construction as an infinite Grassmannian
- Case of line bundles
- Construction as an inductive limit
- Validity of the construction
- Cohomology of BUn
- K theory of BUn
- References
This space with its universal fibration may be constructed as either
- the Grassmannian of n-planes in an infinite-dimensional complex Hilbert space; or,
- the direct limit, with the induced topology, of Grassmannians of n planes.
Both constructions are detailed here.
Construction as an infinite Grassmannian
The total space EU(n) of the universal bundle is given by
Here, H is an infinite-dimensional complex Hilbert space, the ei are vectors in H, and
The group action of U(n) on this space is the natural one. The base space is then
and is the set of Grassmannian n-dimensional subspaces (or n-planes) in H. That is,
so that V is an n-dimensional vector space.
Case of line bundles
For n = 1, one has EU(1) = S∞, which is known to be a contractible space. The base space is then BU(1) = CP∞, the infinite-dimensional complex projective space. Thus, the set of isomorphism classes of circle bundles over a manifold M are in one-to-one correspondence with the homotopy classes of maps from M to CP∞.
One also has the relation that
that is, BU(1) is the infinite-dimensional projective unitary group. See that article for additional discussion and properties.
For a torus T, which is abstractly isomorphic to U(1) × ... × U(1), but need not have a chosen identification, one writes BT.
The topological K-theory K0(BT) is given by numerical polynomials; more details below.
Construction as an inductive limit
Let Fn(Ck) be the space of orthonormal families of n vectors in Ck and let Gn(Ck) be the Grassmannian of n-dimensional subvector spaces of Ck. The total space of the universal bundle can be taken to be the direct limit of the Fn(Ck) as k → ∞, while the base space is the direct limit of the Gn(Ck) as k → ∞.
Validity of the construction
In this section, we will define the topology on EU(n) and prove that EU(n) is indeed contractible.
The group U(n) acts freely on Fn(Ck) and the quotient is the Grassmannian Gn(Ck). The map
is a fibre bundle of fibre Fn−1(Ck−1). Thus because
whenever
This last group is trivial for k > n + p. Let
be the direct limit of all the Fn(Ck) (with the induced topology). Let
be the direct limit of all the Gn(Ck) (with the induced topology).
Lemma: The group
Proof: Let γ : Sp → EU(n), since Sp is compact, there exists k such that γ(Sp) is included in Fn(Ck). By taking k big enough, we see that γ is homotopic, with respect to the base point, to the constant map.
In addition, U(n) acts freely on EU(n). The spaces Fn(Ck) and Gn(Ck) are CW-complexes. One can find a decomposition of these spaces into CW-complexes such that the decomposition of Fn(Ck), resp. Gn(Ck), is induced by restriction of the one for Fn(Ck+1), resp. Gn(Ck+1). Thus EU(n) (and also Gn(C∞)) is a CW-complex. By Whitehead Theorem and the above Lemma, EU(n) is contractible.
Cohomology of BU(n)
Proposition: The cohomology of the classifying space H*(BU(n)) is a ring of polynomials in n variables c1, ..., cn where cp is of degree 2p.
Proof: Let us first consider the case n = 1. In this case, U(1) is the circle S1 and the universal bundle is S∞ → CP∞. It is well known that the cohomology of CPk is isomorphic to
There are homotopy fiber sequences
Concretely, a point of the total space
Applying the Gysin Sequence, one has a long exact sequence
where
Thus we conclude
K-theory of BU(n)
Let us consider topological complex K-theory as the cohomology theory represented by the spectrum
The topological K-theory is known explicitly in terms of numerical symmetric polynomials.
The K-theory reduces to computing K0, since K-theory is 2-periodic by the Bott periodicity theorem, and BU(n) is a limit of complex manifolds, so it has a CW-structure with only cells in even dimensions, so odd K-theory vanishes.
Thus
K0(BU(1)) is the ring of numerical polynomials in w, regarded as a subring of H∗(BU(1); Q) = Q[w], where w is element dual to tautological bundle.
For the n-torus, K0(BTn) is numerical polynomials in n variables. The map K0(BTn) → K0(BU(n)) is onto, via a splitting principle, as Tn is the maximal torus of U(n). The map is the symmetrization map
and the image can be identified as the symmetric polynomials satisfying the integrality condition that
where
is the multinomial coefficient and