Phone +49 40 741056271 | ||
Similar University of Hamburg, University of Alabama at Birmin, Stanford University, Charité, Institute of Science and Tech |
The Center for Molecular Neurobiology Hamburg (ZMNH), founded in 1988, is an internationally recognized molecular neuroscience research center, part of the University Medical Center Hamburg-Eppendorf (UKE). Headed by Prof. Dr. Dr. h. c. Michael Frotscher, the ZMNH is currently home to 205 scientists and staff from 20 different countries (Dec. 2014).
Contents
Research
The focus of the ZMNH is basic research in neurobiology and neuroimmunology, combining molecular genetics with anatomical, biochemical and physiological approaches. The ZMNH is structured into five departments and several independent research groups.
Departments/Institutes
Independent Research Groups
Emeritus Group
Guest Group
Research is supported by in-house facilities for Bioanalytics, Systems Biology, Morphology, Transgenic Animals, and Information Technology. The center has its own administration, machine shop, and library.
Education
Training of graduate students and postdoctoral fellows is an integral part of the mission of the ZMNH. A Graduate Program in Molecular Biology was established at the University Medical Center Hamburg-Eppendorf in 1986 to promote in a multi-disciplinary approach the ability for scientific thinking and working. This Graduate Program presents molecular biology and neuroscience within a broader context of the basic sciences and biomedicine. Fundamental (basic) and clinical (applied) aspects are explored and are integrated with relevant areas of other disciplines. This course, which is organized by the ZMNH, is of particular value to those who plan an academic career in biomedical research or in a related industry.
Major discoveries
Several proteins that are key to synaptic function were first cloned and characterized at the ZMNH, for example the presynaptic proteins Piccolo (PCLO) and Bassoon and the major organizer of the postsynaptic density, PSD-95 (a.k.a. SAP90). Synaptic activity controls the activity of certain genes, the so-called immediate early genes. Arg3.1/Arc, a prominent example of this gene family, was discovered at the ZMNH and found to have important functions in learning and memory.
An early focus of the center was understanding the structure and function of ion channels. The famous 'ball-and-chain' mechanism of potassium channel inactivation was discovered at the ZMNH. A number of human diseases (hereditary forms of myotonia, osteopetrosis, retinal degeneration, kidney stone diseases, epilepsy, deafness) could be mapped to mutations in specific ion channels. These fundamental insights allowed researchers to mimic important aspects of human diseases in genetically accurate animal models, a key step in the development of new drugs.