![]() | ||
In six-dimensional geometry, a cantellated 6-orthoplex is a convex uniform 6-polytope, being a cantellation of the regular 6-orthoplex.
Contents
There are 8 cantellation for the 6-orthoplex including truncations. Half of them are more easily constructed from the dual 5-cube
Alternate names
Construction
There are two Coxeter groups associated with the cantellated 6-orthoplex, one with the B6 or [4,3,3,3,3] Coxeter group, and a lower symmetry with the D6 or [33,1,1] Coxeter group.
Coordinates
Cartesian coordinates for the 480 vertices of a cantellated 6-orthoplex, centered at the origin, are all the sign and coordinate permutations of
(2,1,1,0,0,0)Alternate names
Construction
There are two Coxeter groups associated with the bicantellated 6-orthoplex, one with the B6 or [4,3,3,3,3] Coxeter group, and a lower symmetry with the D6 or [33,1,1] Coxeter group.
Coordinates
Cartesian coordinates for the 1440 vertices of a bicantellated 6-orthoplex, centered at the origin, are all the sign and coordinate permutations of
(2,2,1,1,0,0)Alternate names
Construction
There are two Coxeter groups associated with the cantitruncated 6-orthoplex, one with the B6 or [4,3,3,3,3] Coxeter group, and a lower symmetry with the D6 or [33,1,1] Coxeter group.
Coordinates
Cartesian coordinates for the 960 vertices of a cantitruncated 6-orthoplex, centered at the origin, are all the sign and coordinate permutations of
(3,2,1,0,0,0)Alternate names
Construction
There are two Coxeter groups associated with the bicantitruncated 6-orthoplex, one with the B6 or [4,3,3,3,3] Coxeter group, and a lower symmetry with the D6 or [33,1,1] Coxeter group.
Coordinates
Cartesian coordinates for the 2880 vertices of a bicantitruncated 6-orthoplex, centered at the origin, are all the sign and coordinate permutations of
(3,3,2,1,0,0)Related polytopes
These polytopes are part of a set of 63 uniform 6-polytopes generated from the B6 Coxeter plane, including the regular 6-cube or 6-orthoplex.