Kalpana Kalpana (Editor)

Bond dissociation energy

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit

Bond dissociation energy (BDE or D0) is one measure of the strength of a chemical bond. It can be defined as the standard enthalpy change when a bond is cleaved by homolysis, with reactants and products of the homolysis reaction at 0 K (absolute zero). For instance, the bond-dissociation energy for one of the C–H bonds in ethane (C2H6) is defined by the process:

Contents

CH3CH2–H → CH3CH2 + H D0 = ΔH = 101.1 kcal/mol = 423.0 kJ/mol = 4.40 eV (per bond

The bond-dissociation energy is sometimes called the bond-dissociation enthalpy (or bond enthalpy), but these terms may not be strictly equivalent. Bond-dissociation enthalpy usually refers to the above reaction enthalpy at 298 K (standard conditions) rather than at 0 K, and differs from D0 by about 1.5 kcal/mol (6 kJ/mol) in the case of a bond to hydrogen in a large organic molecule. Nevertheless, the term bond-dissociation energy and the symbol D0 have been used for the reaction enthalpy at 298 K as well.

Bond energy

Except for diatomic molecules, the bond-dissociation energy differs from the bond energy. While the bond-dissociation energy is the energy of a single chemical bond, bond energy is the average of all the bond-dissociation energies of the bonds in a molecule.

For example, dissociation of HO–H bond of a water molecule (H2O) requires 493.4 kJ/mol. The dissociation of the remaining hydroxyl radical requires 424.4 kJ/mol. The bond energy of the covalent O–H bonds in water is said to be 458.9 kJ/mol, the average of these values.

In the same way for removing successive hydrogen atoms from methane the bond-dissociation energies are 104 kcal/mol (435 kJ/mol) for D(CH3–H), 106 kcal/mol (444 kJ/mol) for D(CH2–H), 106 kcal/mol (444 kJ/mol) for D(CH–H) and finally 81 kcal/mol (339 kJ/mol) for D(C–H). The bond energy is, thus, 99 kcal/mol or 414 kJ/mol (the average of the bond-dissociation energies). None of the individual bond-dissociation energies equals the bond energy of 99 kcal/mol.

Homolytic versus heterolytic dissociation

Bonds can be broken symmetrically or asymmetrically. The former is called homolysis and is the basis of the usual BDEs. Asymmetric scission of a bond is called heterolysis. For molecular hydrogen, the alternatives are:

H2 → 2 H           ΔH = 104 kcal/mol (see table below) H2 → H+ + H           ΔH = 66 kcal/mol (in water)

The data tabulated above shows how bond strengths vary over the periodic table. There is great interest, especially in organic chemistry, concerning relative strengths of bonds within a given group of compounds.

References

Bond-dissociation energy Wikipedia