![]() | ||
LOINC 5639-0, 5640-8, 15120-9, 56478-1 |
Blood alcohol content (BAC), also called blood alcohol concentration, blood ethanol concentration, or blood alcohol level, is most commonly used as a metric of alcohol intoxication for legal or medical purposes. Blood Alcohol Content is the legal name for BAC but Blood Alcohol Concentration is sometimes used for simpler description.
Contents
- Estimated blood alcohol content by intake
- Binge drinking
- Units of measurement
- Legal limits
- Limits by country BrAC breath alcohol content
- Other limitation schemes
- Test assumptions
- Metabolism and excretion
- Full stomachs
- Carbonated beverages
- Stress
- Retrograde extrapolation
- Highest recorded blood alcohol levelcontent
- References
Blood alcohol concentration is usually expressed as a percentage of ethanol in the blood in units of mass of alcohol per volume of blood or mass of alcohol per mass of blood, depending on the country. For instance, in North America a BAC of 0.1 (0.1% or one tenth of one percent) means that there are 0.10 g of alcohol for every dl of blood.
Estimated blood alcohol content by intake
To calculate estimated peak blood alcohol concentration (EBAC), a variation, including drinking period in hours, of the Widmark formula was used. The formula is:
where :
Regarding metabolism (MR) in the formula; Females demonstrated a higher average rate of elimination (mean, 0.017; range, 0.014-0.021 g/210 L) than males (mean, 0.015; range, 0.013-0.017 g/210 L). Female subjects on average had a higher percentage of body fat (mean, 26.0; range, 16.7-36.8%) than males (mean, 18.0; range, 10.2-25.3%). Additionally, men are, on average, heavier than women but it is not strictly accurate to say that the water content of a person alone is responsible for the dissolution of alcohol within the body, because alcohol does dissolve in fatty tissue as well. When it does, a certain amount of alcohol is temporarily taken out of the blood and briefly stored in the fat. For this reason, most calculations of alcohol to body mass simply use the weight of the individual, and not specifically his/her water content. Finally, it is speculated that the bubbles in sparkling wine may speed up alcohol intoxication by helping the alcohol to reach the bloodstream faster. A study conducted at the University of Surrey in the United Kingdom gave subjects equal amounts of flat and sparkling Champagne which contained the same levels of alcohol. After 5 minutes following consumption, the group that had the sparkling wine had 54 milligrams of alcohol in their blood while the group that had the same sparkling wine, only flat, had 39 milligrams.
Examples:
Note: This chart defines a drink as 14g of ethanol, while the formula defines a drink as 10g of ethanol.
Binge drinking
The National Institute on Alcohol Abuse and Alcoholism (NIAAA) define the term "binge drinking" as a pattern of drinking that brings a person’s blood alcohol concentration (BAC) to 0.08 grams percent or above. This typically happens when men consume 5 or more drinks, and when women consume 4 or more drinks, in about 2 hours.
Units of measurement
There are several different units in use around the world for defining blood alcohol concentration. Each is defined as either a mass of alcohol per volume of blood or a mass of alcohol per mass of blood (never a volume per volume). 1 milliliter of blood has a mass of approximately 1.06 grams. Because of this, units by volume are similar but not identical to units by mass. In the U.S. the concentration unit 1% w/v (percent mass/volume, equivalent to 10 g/l or 1 g per 100 ml) is in use. This is not to be confused with the amount of alcohol measured on the breath, as with a breathalyzer. The amount of alcohol measured on the breath is generally accepted as proportional to the amount of alcohol present in the blood at a rate of 1:2100. Therefore, a breathalyzer measurement of 0.10 mg/L of breath alcohol converts to 0.0001×2100 g/10dL, or 0.021 g/dL of blood alcohol (the units of the BAC in the United States). While a variety of units (or sometimes lack thereof) is used throughout the world, many countries use the g/L unit, which does not create confusion as percentages do. Usual units are highlighted in the table below.
Legal limits
For purposes of law enforcement, blood alcohol content is used to define intoxication and provides a rough measure of impairment. Although the degree of impairment may vary among individuals with the same blood alcohol content, it can be measured objectively and is therefore legally useful and difficult to contest in court. Most countries disallow operation of motor vehicles and heavy machinery above prescribed levels of blood alcohol content. Operation of boats and aircraft are also regulated.
The alcohol level at which a person is considered legally impaired varies by country. The list below gives limits by country. These are typically blood alcohol content limits for the operation of a vehicle.
It is illegal to have any measurable alcohol in the blood while driving in these countries. Most jurisdictions have a tolerance slightly higher than zero to account for false positives and naturally occurring alcohol in the body. Some of the following jurisdictions have a general prohibition of alcohol.
Limits by country (BrAC: breath alcohol content)
In certain countries, alcohol limits are determined by the breath alcohol content (BrAC), not to be confused with blood alcohol content (BAC).
Other limitation schemes
Test assumptions
Blood alcohol tests assume the individual being tested is average in various ways. For example, on average the ratio of blood alcohol content to breath alcohol content (the partition ratio) is 2100 to 1. In other words, there are 2100 parts of alcohol in the blood for every part in the breath. However, the actual ratio in any given individual can vary from 1300:1 to 3100:1, or even more widely. This ratio varies not only from person to person, but within one person from moment to moment. Thus a person with a true blood alcohol level of .08% but a partition ratio of 1700:1 at the time of testing would have a .10 reading on a Breathalyzer calibrated for the average 2100:1 ratio.
A similar assumption is made in urinalysis. When urine is analyzed for alcohol, the assumption is that there are 1.3 parts of alcohol in the urine for every 1 part in the blood, even though the actual ratio can vary greatly.
Breath alcohol testing further assumes that the test is post-absorptive—that is, that the absorption of alcohol in the subject's body is complete. If the subject is still actively absorbing alcohol, their body has not reached a state of equilibrium where the concentration of alcohol is uniform throughout the body. Most forensic alcohol experts reject test results during this period as the amounts of alcohol in the breath will not accurately reflect a true concentration in the blood.
Metabolism and excretion
Alcohol is absorbed throughout the gastrointestinal tract, but more slowly in the stomach than in the small or large intestine. For this reason, alcohol consumed with food is absorbed more slowly, because it spends a longer time in the stomach. Furthermore, alcohol dehydrogenase is present in the stomach lining. After absorption, the alcohol passes to the liver through the hepatic portal vein, where it undergoes a first pass of metabolism before entering the general bloodstream.
Alcohol is removed from the bloodstream by a combination of metabolism, excretion, and evaporation. The relative proportion disposed of in each way varies from person to person, but typically about 95% is metabolized by the liver. The remainder of the alcohol is eliminated through excretion in breath, urine, sweat, feces, milk and saliva. Excretion into urine typically begins after about 40 minutes, whereas metabolisation commences as soon as the alcohol is absorbed, and even before alcohol levels have risen in the brain.
Alcohol is metabolized mainly by the group of six enzymes collectively called alcohol dehydrogenase. These convert the ethanol into acetaldehyde (an intermediate more toxic than ethanol). The enzyme acetaldehyde dehydrogenase then converts the acetaldehyde into non-toxic acetic acid.
Many physiologically active materials are removed from the bloodstream (whether by metabolism or excretion) at a rate proportional to the current concentration, so that they exhibit exponential decay with a characteristic halflife (see pharmacokinetics). This is not true for alcohol, however. Typical doses of alcohol actually saturate the enzymes' capacity, so that alcohol is removed from the bloodstream at an approximately constant rate. This rate varies considerably between individuals. Another sex based difference is in the elimination of alcohol. People under 25, women or with liver disease may process alcohol more slowly. False High (BAC) readings are related to patients with proteinuria and hematuria, due to kidney-liver metabolism and failure (for example, Hematuria 1+ protenuria 1+ )
Such persons have impaired acetaldehyde dehydrogenase, which causes acetaldehyde levels to peak higher, producing more severe hangovers and other effects such as flushing and tachycardia. Conversely, members of certain ethnicities that traditionally did not use alcoholic beverages have lower levels of alcohol dehydrogenases and thus "sober up" very slowly, but reach lower aldehyde concentrations and have milder hangovers. Rate of detoxification of alcohol can also be slowed by certain drugs which interfere with the action of alcohol dehydrogenases, notably aspirin, furfural (which may be found in fusel alcohol), fumes of certain solvents, many heavy metals, and some pyrazole compounds. Also suspected of having this effect are cimetidine (Tagamet), ranitidine (Zantac), and acetaminophen (Tylenol) (paracetamol).
Currently, the only known substance that can increase the rate of metabolism of alcohol is fructose. The effect can vary significantly from person to person, but a 100 g dose of fructose has been shown to increase alcohol metabolism by an average of 80%. Fructose also increases false positives of high BAC ratio readings in anyone with proteinuria and hematuria, due to kidney-liver metabolism.
Full stomachs
Alcohol absorption can be slowed by ingesting alcohol on a full stomach. Spreading the total absorption of alcohol over a greater period of time decreases the maximum alcohol level, decreasing the hangover effect. Thus, drinking on a full stomach or drinking while ingesting drugs which slow the breakdown of ethanol into acetaldehyde will reduce the maximum blood levels of this substance and thus decrease the hangover.
Carbonated beverages
Alcohol in carbonated beverages is absorbed faster than alcohol in non-carbonated drinks. Another study also confirmed this, conducted at the University of Surrey in the United Kingdom gave subjects equal amounts of flat and sparkling champagne which contained the same levels of alcohol. After 5 minutes following consumption, the group that had the sparkling wine had 54 milligrams of alcohol in their blood while the group that had the same wine, only flat, had 39 milligrams.
Stress
Being under stress causes alcohol to metabolize faster.
Retrograde extrapolation
Retrograde extrapolation is the mathematical process by which someone's blood alcohol concentration at the time of driving is estimated by projecting backwards from a later chemical test. This involves estimating the absorption and elimination of alcohol in the interim between driving and testing. The rate of elimination in the average person is commonly estimated at .015 to .020 grams per deciliter per hour (g/dl/h), although again this can vary from person to person and in a given person from one moment to another. Metabolism can be affected by numerous factors, including such things as body temperature, the type of alcoholic beverage consumed, and the amount and type of food consumed.
In an increasing number of states, laws have been enacted to facilitate this speculative task: the blood alcohol content at the time of driving is legally presumed to be the same as when later tested. There are usually time limits put on this presumption, commonly two or three hours, and the defendant is permitted to offer evidence to rebut this presumption.
Forward extrapolation can also be attempted. If the amount of alcohol consumed is known, along with such variables as the weight and sex of the subject and period and rate of consumption, the blood alcohol level can be estimated by extrapolating forward. Although subject to the same infirmities as retrograde extrapolation—guessing based upon averages and unknown variables—this can be relevant in estimating BAC when driving and/or corroborating or contradicting the results of a later chemical test.
Highest recorded blood alcohol level/content
There have been reported cases of blood alcohol content higher than 1%: