| Parameters a        >        0              {\displaystyle a>0}   (real)                    0        <        b        ≤        1              {\displaystyle 0 Support x        ≥        1              {\displaystyle x\geq 1} PDF e                                                    a                b                                      (            1            −                          x                              b                                      )                                    x                      b            −            2                                    (          a                      x                          b                                −          b          +          1          )                      {\displaystyle e^{{\frac {a}{b}}(1-x^{b})}x^{b-2}\left(ax^{b}-b+1\right)} CDF 1        −                  x                      b            −            1                                    e                                                    a                b                                      (            1            −                          x                              b                                      )                                {\displaystyle 1-x^{b-1}e^{{\frac {a}{b}}(1-x^{b})}} Mean 1        +                              1            a                                {\displaystyle 1+{\frac {1}{a}}} Median {                                                                                                                              log                                                (                        2                        )                                            a                                                        +                  1                                                                      if                                                       b                  =                  1                                                                                                                        (                                              (                                                                                                            1                              −                              b                                                        a                                                                          )                                                                    W                                                                    (                                                                                                                                            2                                                                                                      b                                                                          1                                      −                                      b                                                                                                                                                                  a                                                              e                                                                                                      a                                                                          1                                      −                                      b                                                                                                                                                                                                                          1                              −                              b                                                                                                      )                                            )                                                                                                                1                          b                                                                                                                                                          otherwise                                                                                                                           {\displaystyle {\begin{cases}{\frac {\log(2)}{a}}+1&{\text{if}}\ b=1\\\left(\left({\frac {1-b}{a}}\right)\mathbf {W} \left({\frac {2^{\frac {b}{1-b}}ae^{\frac {a}{1-b}}}{1-b}}\right)\right)^{\tfrac {1}{b}}&{\text{otherwise}}\ \end{cases}}}  Where                               W                (        x        )              {\displaystyle \mathbf {W} (x)}   is the Lambert W function | ||
The Benktander type II distribution, also called the Benktander distribution of the second kind, is one of two distributions introduced by Gunnar Benktander (1970) to model heavy-tailed losses commonly found in non-life/casualty actuarial science, using various forms of mean excess functions (Benktander & Segerdahl 1960). This distribution is "close" to the Weibull distribution (Kleiber & Kotz 2003).
References
Benktander type II distribution Wikipedia(Text) CC BY-SA
