Trisha Shetty (Editor)

Bézout's identity

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit

Bézout's identity (also called Bézout's lemma) is a theorem in elementary number theory: let a and b be nonzero integers and let d be their greatest common divisor. Then there exist integers x and y such that

Contents

a x + b y = d .

In addition,

  • the greatest common divisor d is the smallest positive integer that can be written as ax + by
  • every integer of the form ax + by is a multiple of the greatest common divisor d.
  • The integers x and y are called Bézout coefficients for (a, b); they are not unique. A pair of Bézout coefficients can be computed by the extended Euclidean algorithm. If both a and b are nonzero, the extended Euclidean algorithm produces one of the two pairs such that | x | | b d | and | y | | a d | (equality may occur only if one of a and b is a multiple of the other).

    Many theorems of elementary theory of numbers, such as Euclid's lemma or Chinese remainder theorem, result from Bézout's identity.

    A Bézout domain is an integral domain in which Bézout's identity holds. In particular, Bézout's identity holds in principal ideal domains. Every theorem that results from Bézout's identity is thus true in all these domains.

    Structure of solutions

    When one pair of Bézout coefficients (x, y) has been computed (e.g., using extended Euclidean algorithm), all pairs can be represented in the form

    ( x + k b gcd ( a , b ) ,   y k a gcd ( a , b ) ) ,

    where k is an arbitrary integer and the fractions simplify to integers.

    Among these pairs of Bézout coefficients, exactly two of them satisfy

    | x | | b gcd ( a , b ) | and | y | | a gcd ( a , b ) | ,

    and equality may occur only if one of a and b divides the other. This relies on a property of Euclidean division: given two integers c and d, if d does not divide c, there is exactly one pair (q,r) such that c = dq + r and 0 < r < |d|, and another one such that c = dq + r and 0 < -r < |d|. The two pairs of small Bézout's coefficients are obtained by choosing k in the above formula for getting either remainder of the division of x by b / gcd ( a , b ) .

    The Extended Euclidean algorithm always produces one of these two minimal pairs.

    Example

    Let a = 12 and b = 42, gcd (12, 42) = 6. Then we have the following Bézout's identities, with the Bézout coefficients written in red for the minimal pairs and in blue for the other ones.

    12 × 10 + 42 × 3 = 6 12 × 3 + 42 × 1 = 6 12 × 4 + 42 × 1 = 6 12 × 11 + 42 × 3 = 6 12 × 18 + 42 × 5 = 6

    Proof

    (proof adapted from 'proofwiki.org')

    Bézout's lemma is a consequence of the defining property of Euclidean division, namely: that dividing a positive integer p by a positive integer q yields a remainder greater than or equal to zero and strictly less than q .

    i.e. p = n q + r , 0 r < q

    To begin the proof of Bézout's lemma, let d be the smallest positive integer of the form a x + b y . Specifically,

    let d = a s + b t

    let n = a x + b y , n > d

    If n is not divisible by d, then according to Euclidean division,

    which of course is of the form a x + b y

    But r < d which violates the original premise that d is the smallest number in that form, therefore r = 0 and

    n is divisible by d

    Since n can be any number of the form a x + b y lets look at the following specific examples:

    Therefore, d is a common divisor to both a and b

    If there exists another common divisor ( c ) of a and b , then it also divides d

    If c divides d, then c d

    Therefore, (finally) d is the greatest common divisor.

    This proof does not provide a method for computing Bézout's coefficients. However, Bézout's lemma is also a corollary of the proof of the Extended Euclidean algorithm and this algorithm does provide an efficient method of computing these coefficients. This algorithm and the associated proof may also be extended to any Euclidean domain.

    For three or more integers

    Bézout's identity can be extended to more than two integers: if

    gcd ( a 1 , a 2 , , a n ) = d

    then there are integers x 1 , x 2 , , x n such that

    d = a 1 x 1 + a 2 x 2 + + a n x n

    has the following properties:

  • d is the smallest positive integer of this form
  • every number of this form is a multiple of d
  • For polynomials

    Bézout's identity works for univariate polynomials over a field exactly in the same ways as for integers. In particular the Bézout's coefficients and the greatest common divisor may be computed with the Extended Euclidean algorithm.

    As the common roots of two polynomials are the roots of their greatest common divisor, Bézout's identity and fundamental theorem of algebra imply the following result:

    For univariate polynomials f and g with coefficients in a field, there exist polynomials a and b such that af + bg = 1 if and only if f and g have no common root in any algebraically closed field (commonly the field of complex numbers).

    The generalization of this result to any number of polynomials and indeterminates is Hilbert's Nullstellensatz.

    For principal ideal domains

    As noted in the introduction, Bézout's identity works not only in the ring of integers, but also in any other principal ideal domain (PID). That is, if R is a PID, and a and b are elements of R, and d is a greatest common divisor of a and b, then there are elements x and y in R such that ax + by = d. The reason: the ideal Ra+Rb is principal and indeed is equal to Rd.

    An integral domain in which Bézout's identity holds is called a Bézout domain.

    History

    French mathematician Étienne Bézout (1730–1783) proved this identity for polynomials. However, this statement for integers can be found already in the work of another French mathematician, Claude Gaspard Bachet de Méziriac (1581–1638).

    References

    Bézout's identity Wikipedia