The axle load of a wheeled vehicle is the total weight felt by the roadway for all wheels connected to a given axle. Viewed another way, it is the fraction of total vehicle weight resting on a given axle. Axle load is an important design consideration in the engineering of roadways and railways, as both are designed to tolerate a maximum weight-per-axle (axle load); exceeding the maximum rated axle load will cause damage to the roadway or rail tracks.
Contents
Railway use
On railways, a given section of track is designed to a maximum axle load. The maximum axle load is related to the strength of the track, which is determined by weight of rails, density of sleepers and fixtures, train speeds, amount of ballast, and strength of bridges. Because track and especially the rails are expensive, it is desirable to optimise the track for a given axle load. If the track is overloaded by trains that are too heavy, it can be destroyed in a short time. However, it is also convenient for the steelworks that rails are made in a limited number of sizes, so that a perfect match of rail weight and axle load is rarely achieved. New rail is often reserved for heavy main line use, which releases good but lighter rail that can be cascaded for lighter duties on branch lines. The lightest rail cascaded from the lightest branch lines may have no railway use other that for structural items such as fenceposts, telegraph posts and for reinforcing concrete. Higher operating speeds can be achieved through reduced axle loads and increased density of sleepers.
Track
Light railways were built with rail weighing as little as 30 lb/yd (14.9 kg/m) but main lines used much heavier rail. On former British Rail lines the rail is mostly 90 lb/yd (44.6 kg/m) or 120 lb/yd (59.5 kg/m) .
Locomotives
In British Rail days most diesel locomotives were built to a maximum axle load of 19 long tons (19.3 tonnes; 21.3 short tons) so the maximum locomotive weight was 76 long tons (77.2 tonnes; 85.1 short tons) for a four-axle locomotive and 114 long tons (115.8 tonnes; 127.7 short tons) for a six-axle one. Higher axle loads are now permitted, e.g. the Class 67 locomotive is a four-axle machine weighing 90 tonnes (88.6 long tons; 99.2 short tons), giving 22.5 tonnes (22.1 long tons; 24.8 short tons) on each axle.
Example 1
The new branch line from Blackwater, Queensland to Rolleston is being built in 2005 to haul the following:
Example 2
The new heavy-duty Fortescue Railway:
Example 3
Other examples
Maximum
The absolute maximum axle load for railways is about 40 tonnes (39.4 long tons; 44.1 short tons), above which the crushed stones used as track ballast of the rails start to be pulverised by the vibration from passing trains.
Bridges (Line load)
Additional calculations must be made for bridges since a span may have to carry several locomotives and wagons at once. Heavy braking also imposes limits on the strength of piers.
Usually there is a maximum weight, in tonnes per meter or pounds per foot of vehicle length, decided for bridges, which might be 6–12 tonnes per meter.
Theodore Cooper developed the E10 loading system for calculating the strength of bridges,
An under-strength bridge can limit the maximum axle load for a whole line, for example:
Roadway use
The term axle load is also applicable to trucks which is complicated by the fact that trucks may have more than two wheels per axle. In this case, the axle load remains the same, but the load borne by the individual wheels is reduced by having more wheels to distribute the load.