Sneha Girap (Editor)

Artur Ekert

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
Nationality
  
British Polish

Known for
  
Quantum cryptography

Awards
  
Hughes Medal

Name
  
Artur Ekert

Fields
  
Physics, Cryptography

Role
  
Professor


Artur Ekert httpsuploadwikimediaorgwikipediacommons88

Born
  
19 September 1961 (age 62) Wroclaw, Poland (
1961-09-19
)

Institutions
  
Merton College Oxford University National University of Singapore

Alma mater
  
Jagiellonian University University of Oxford

Doctoral students
  
Patrick Hayden Michele Mosca Willem van Dam

Notable awards
  
Maxwell Medal and Prize (1995) Hughes Medal (2007)

Education
  
Jagiellonian University, University of Oxford, Wolfson College, Oxford

Doctoral advisor
  
Peter Knight, David Deutsch, Keith Burnett

Similar People
  
Dirk Bouwmeester, David Deutsch, Peter Knight

Residence
  
United Kingdom, Singapore

Prof artur ekert quantum cryptography the ultimate physical limits of privacy


Artur Konrad Ekert FRS (born 19 September 1961 in Wrocław, Poland) is a British-Polish Professor of Quantum Physics at the Mathematical Institute, University of Oxford, Professorial Fellow in Quantum Physics and Cryptography at Merton College, Oxford, Lee Kong Chian Centennial Professor at the National University of Singapore and Director of the Centre for Quantum Technologies (CQT). His research interests extend over most aspects of information processing in quantum-mechanical systems, with a focus on quantum communication and quantum computation. He is best known as one of the inventors of quantum cryptography.

Contents

Artur Ekert httpswwwmertonoxacuksitesmertonoxacuk

Artur ekert past present and future of quantum information


Education

Ekert studied physics at the Jagiellonian University in Cracow and at the University of Oxford. Between 1987 and 1991 he was a graduate student at Wolfson College, Oxford. In his doctoral thesis he showed how quantum entanglement and non-locality can be used to distribute cryptographic keys with perfect security.

Research and career

In 1991 he was elected a Junior Research Fellow and subsequently (1994) a Research Fellow at Merton College, Oxford. At the time he established the first research group in quantum cryptography and computation, based in the Clarendon Laboratory, Oxford. Subsequently, it evolved into the Centre for Quantum Computation, now based at DAMTP in Cambridge.

Between 1993 and 2000 he held a position of the Royal Society Howe Fellow. In 1998 he was appointed a Professor of Physics at the University of Oxford and a Fellow and Tutor in Physics at Keble College, Oxford. From 2002 until early 2007 he was the Leigh-Trapnell Professor of Quantum Physics at the Department of Applied Mathematics and Theoretical Physics, Cambridge University and a Professorial Fellow of King's College, Cambridge. Since 2007 he has been a Professor of Quantum Physics at the Mathematical Institute, University of Oxford, and a Lee Kong Chian Centennial Professor at the National University of Singapore.

He has worked with and advised several companies and government agencies. He has served on several professional advisory boards and is one the trustees of The Croucher Foundation.

Ekert's research extends over most aspects of information processing in quantum-mechanical systems, with a focus on quantum cryptography and quantum computation. Building on the idea of quantum non-locality and Bell's inequalities he introduced entanglement-based quantum key distribution in his 1991 paper which generated a spate of new research that established a vigorously active new area of physics and cryptography. It is one of the most cited papers in the field and was chosen by the editors of the Physical Review Letters as one of their "milestone letters", i.e. papers that made important contributions to physics, announced significant discoveries, or started new areas of research. His subsequent work with John Rarity and Paul Tapster, from the Defence Research Agency (DRA) in Malvern, resulted in the proof-of-principle experimental quantum key distribution, introducing parametric down-conversion, phase encoding and quantum interferometry into the repertoire of cryptography. He and collaborators were the first to develop the concept of a security proof based on entanglement purification.

Ekert and colleagues have made a number of contributions to both theoretical aspects of quantum computation and proposals for its experimental realisations. These include proving that almost any quantum logic gate operating on two quantum bits is universal, proposing one of the first realistic implementations of quantum computation, e.g. using the induced dipole-dipole coupling in an optically driven array of quantum dots, introducing more stable geometric quantum logic gates, and proposing "noiseless encoding", which became later known as decoherence free subspaces. His other notable contributions include work on quantum state swapping, optimal quantum state estimation and quantum state transfer. With some of the same collaborators, he has written on connections between the notion of mathematical proofs and the laws of physics. He has also contributed semi-popular writing on the history of science.

Honours and awards

For his discovery of quantum cryptography he was awarded the 1995 Maxwell Medal and Prize by the Institute of Physics and the 2007 Hughes Medal by the Royal Society. He is also a co-recipient of the 2004 European Union Descartes Prize. In 2016 he was elected a Fellow of the Royal Society.

References

Artur Ekert Wikipedia


Similar Topics