Neha Patil

AFM IR

Updated on
Share on FacebookTweet on TwitterShare on LinkedIn
AFM-IR

AFM-IR (atomic force microscope infrared-spectroscopy) is one of a family of techniques that are derived from a combination of two parent instrumental techniques; Infrared spectroscopy and Scanning probe microscopy (SPM). The term was first used to denote a method that combined a tuneable Free electron laser with an Atomic force microscope (a type of SPM) equipped with a sharp probe that measured the local absorption of infrared light by a sample; it required that the sample be coupled to an infrared-transparent prism and be less than 1μm thick. It improved the spatial resolution of photothermal AFM-based techniques from microns to circa 100 nm.

Contents

Recording the amount of infrared absorption as a function of wavelength or wavenumber creates an infrared absorption spectra that can be used to chemically characterize and even identify unknown materials. Recording the infrared absorption as a function of position can be used to create chemical composition maps that show the spatial distribution of different chemical components. Novel extensions of the original AFM-IR technique and earlier techniques have enabled the development of bench-top devices capable of nanometer spatial resolution, that do not require a prism and can work with thicker samples, and thereby greatly improving ease of use and expanding the range of samples that can be analysed. One of these techniques has achieved spatial resolutions down to around 20 nm, with a sensitivity down to the scale of molecular monolayer

AFM-IR is related to techniques such as Tip-enhanced Raman spectroscopy (TERS) and Scanning near-field optical microscopy (SNOM), and other methods of vibrational analysis with scanning probe microscopy.

History

The earliest measurements combining AFM with infrared spectroscopy were performed in 1999 by Hammiche et al. at the University of Lancaster in the United Kingdom, in an EPSRC-funded project led by M Reading and H M Pollock. Separately, Anderson at the Jet Propulsion Laboratory in the United States made a related measurement in 2000. Both groups used a conventional Fourier transform infrared spectrometer (FTIR) equipped with a broadband thermal source, the radiation was focused near the tip of a probe that was in contact with a sample. The Lancaster group obtained spectra by detecting the absorption of infrared radiation using a temperature sensitive thermal probe. Anderson took the different approach of using a conventional AFM probe to detect the thermal expansion. He reported an interferogram but not a spectrum; the first infrared spectrum obtained in this way was reported by Hammiche et al. in 2004: this represented the first proof that spectral information about a sample could be obtained using this approach.

Both of these early experiments used a broadband source in conjunction with an interferometer; these techniques could, therefore, be referred to as AFM-FTIR although Hammiche et al. coined the more general term Photothermal microspectroscopy or PTMS in their first paper. PTMS has various subgroups; including techniques that measure temperature measure thermal expansion use broadband sources. use lasers excite the sample using evanescent waves, illuminate the sample directly from above etc. and different combinations of these. Fundamentally, they all exploit the photothermal effect. Different combinations of sources, methods, methods of detection and methods of illumination have benefits for different applications. Care should be taken to ensure that it is clear which form of PTMS is being used in each case. Currently there is no universally accepted nomenclature. The original technique dubbed AFM-IR that induced resonant motion in the probe using a Free Electron Laser has developed by exploiting the forgoing permutations so that it has evolved into various forms.

The pioneering experiments of Hammiche et al and Anderson had limited spatial resolution due to thermal diffusion - the spreading of heat away from the region where the infrared light was absorbed. The thermal diffusion length (the distance the heat spreads) is inversely proportional to the root of the modulation frequency. Consequently, the spatial resolution achieved by the early AFM-IR approaches was around one micron or more, due to the low modulation frequencies of the incident radiation created by the movement of the mirror in the interferometer. Also, the first thermal probes were Wollaston wire devices that were developed originally for Microthermal analysis (in fact PTMS was originally considered to be one of a family of microthermal techniques). The comparatively large size of these probes also limited spatial resolution. Bozec et al. and Reading et al. used thermal probes with nanoscale dimensions and demonstrated higher spatial resolution. Ye et al described a MEM-type thermal probe giving sub-100 nm spatial resolution, which they used for nanothermal analysis. The process of exploring laser sources began in 2001 by Hammiche et al when they acquired the first spectrum using a tuneable laser (see Resolution improvement with pulsed laser source).

A significant development was the creation by Reading et al. in 2001 of a custom interface that allowed measurements to be made while illuminating the sample from above; this interface focused the infrared beam to a spot of circa 500μm diameter, close to the theoretical maximum. The use of top-down or top-side illumination has the important benefit that samples of arbitrary thickness can be studied on arbitrary substrates. In many cases this can be done without any sample preparation. All subsequent experiments by Hammiche, Pollock, Reading and their co-workers were made using this type of interface including the instrument constructed by Hill et al. for nanoscale imaging using a pulsed laser. The work of the University of Lancaster group in collaboration with workers from the University of East Anglia led to the formation of a company, Anasys Instruments, to exploit this and related technologies (see Commercialization).

Commercialization

The AFM-IR technique based on a pulsed infrared laser source was commercialized by Anasys Instruments, a company founded by Reading, Hammiche and Pollock in the United Kingdom in 2004; a sister, United States corporation was founded a year later. Anasys Instruments developed its product with support from the National Institute of Standards and Technology and the National Science Foundation. Since free electron lasers are rare and available only at select institutions, a key to enabling a commercial AFM-IR was to replace them with a more compact type of infrared source. Following the lead given by Hammiche et al in 2001 and Hill et al in 2008, Anasys Instruments introduced an AFM-IR product in early 2010, using a tabletop laser source based on a nanosecond optical parametric oscillator. The OPO source enabled nanoscale infrared spectroscopy over a tuning range of roughly 1000–4000 cm−1 or 2.5-10 μm.

The initial product required samples to be mounted on infrared-transparent prisms, with the infrared light being directed from below in the manner of Dazzi et al. For best operation, this illumination scheme required thin samples, with optimal thickness of less than 1 μm, prepared on the surface of the prism. In 2013, Anasys released an AFM-IR instrument based on the work of Hill et al. that supported top-side illumination.

References

AFM-IR Wikipedia


Similar Topics
Mark Bartholomeusz
Anthony Guise
Jennifer Williamson
Topics