Parameters ( A N , b N , c N , A P , b P , c P ) {displaystyle ({ extbf {A}}_{N},{ extbf {b}}_{N},{ extbf {c}}_{N},{ extbf {A}}_{P},{ extbf {b}}_{P},{ extbf {c}}_{P})} R ( σ ( A P ) ) < 0 {displaystyle mathbb {R} (sigma ({ extbf {A}}_{P}))<0} R ( σ ( A N ) ) > 0 {displaystyle mathbb {R} (sigma ({ extbf {A}}_{N}))>0} Support x ∈ ( − ∞ ; + ∞ ) {displaystyle xin (-infty ;+infty )!} PDF f ( x ) = { c N e A N x b N if x < 0 c P e A P x b P if x ≥ 0 {displaystyle f(x)=left{{egin{matrix}{ extbf {c}}_{N}e^{{ extbf {A}}_{N}x}{ extbf {b}}_{N}&{ ext{if }}x<0[8pt]{ extbf {c}}_{P}e^{{ extbf {A}}_{P}x}{ extbf {b}}_{P}&{ ext{if }}xgeq 0end{matrix}}ight.} CDF F ( x ) = { c N A N − 1 e A N x b N if x < 0 1 + c P A P − 1 e A P x b P if x ≥ 0 {displaystyle F(x)=left{{egin{matrix}{ extbf {c}}_{N}{ extbf {A}}_{N}^{-1}e^{{ extbf {A}}_{N}x}{ extbf {b}}_{N}&{ ext{if }}x<0[8pt]1+{ extbf {c}}_{P}{ extbf {A}}_{P}^{-1}e^{{ extbf {A}}_{P}x}{ extbf {b}}_{P}&{ ext{if }}xgeq 0end{matrix}}ight.} Mean − c N ( − A N ) − 2 b N + c P ( − A P ) − 2 b P {displaystyle -{ extbf {c}}_{N}(-{ extbf {A}}_{N})^{-2}{ extbf {b}}_{N}+{ extbf {c}}_{P}(-{ extbf {A}}_{P})^{-2}{ extbf {b}}_{P}} CF − c N ( I i u − A N ) − 1 b N + c P ( I i u − A P ) − 1 b P {displaystyle -{ extbf {c}}_{N}(Iiu-{ extbf {A}}_{N})^{-1}{ extbf {b}}_{N}+{ extbf {c}}_{P}(Iiu-{ extbf {A}}_{P})^{-1}{ extbf {b}}_{P}} |
In probability theory, a 2-EPT probability density function is a class of probability density functions on the real line. The class contains the density functions of all distributions that have characteristic functions that are strictly proper rational functions.
Contents
Definition
A 2-EPT probability density function is a probability density function on
Any EPT density function on
where e represents a matrix exponential,
The parameterization
The general class of probability measures on
It can be shown using Parseval's theorem and an isometry that approximating the discrete time rational transform is equivalent to approximating the 2-EPT density itself in the L-2 Norm sense. The rational approximation software RARL2 is used to approximate the discrete time rational characteristic function of the density.
Applications
Examples of applications include option pricing, computing the Greeks and risk management calculations. Fitting 2-EPT density functions to empirical data has also been considered.