Neha Patil (Editor)

Whittaker function

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit

In mathematics, a Whittaker function is a special solution of Whittaker's equation, a modified form of the confluent hypergeometric equation introduced by Whittaker (1904) to make the formulas involving the solutions more symmetric. More generally, Jacquet (1966, 1967) introduced Whittaker functions of reductive groups over local fields, where the functions studied by Whittaker are essentially the case where the local field is the real numbers and the group is SL2(R).

Whittaker's equation is

d 2 w d z 2 + ( 1 4 + κ z + 1 / 4 μ 2 z 2 ) w = 0.

It has a regular singular point at 0 and an irregular singular point at ∞. Two solutions are given by the Whittaker functions Mκ,μ(z), Wκ,μ(z), defined in terms of Kummer's confluent hypergeometric functions M and U by

M κ , μ ( z ) = exp ( z / 2 ) z μ + 1 2 M ( μ κ + 1 2 , 1 + 2 μ ; z ) W κ , μ ( z ) = exp ( z / 2 ) z μ + 1 2 U ( μ κ + 1 2 , 1 + 2 μ ; z ) .

The Whittaker functions M κ , μ ( z ) and W κ , μ ( z ) are the same as those with opposite values of μ, in other words considered as a function of μ at fixed κ and z they are even functions. When κ and z are real, the functions give real values for real and imaginary values of μ. These functions of μ play a role in so-called Kummer spaces.

Whittaker functions appear as coefficients of certain representations of the group SL2(R), called Whittaker models.

References

Whittaker function Wikipedia