Girish Mahajan (Editor)

Whitney covering lemma

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit

In mathematical analysis, the Whitney covering lemma, or Whitney decomposition, asserts the existence of a certain type of partition of an open set in a Euclidean space. Originally it was employed in the proof of Hassler Whitney's extension theorem. The lemma was subsequently applied to prove generalizations of the Calderón–Zygmund decomposition.

Roughly speaking, the lemma states that it is possible to decompose an open set by cubes each of whose diameters is proportional, within certain bounds, to its distance from the boundary of the open set. More precisely:

Whitney Covering Lemma (Grafakos 2008, Appendix J)

Let Ω be an open non-empty proper subset of R n . Then there exists a family of closed cubes { Q j } j such that

  • j Q j = Ω and the Q j 's have disjoint interiors.
  • n l ( Q j ) d i s t ( Q j , Ω c ) 4 n l ( Q j ) .
  • If the boundaries of two cubes Q j and Q k touch then 1 4 l ( Q j ) l ( Q k ) 4.
  • For a given Q j there exist at most 12 n Q k 's that touch it.
  • Where l ( Q ) denotes the length of a cube Q .

    References

    Whitney covering lemma Wikipedia


    Similar Topics