Puneet Varma (Editor)

UP (complexity)

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit

In complexity theory, UP ("Unambiguous Non-deterministic Polynomial-time") is the complexity class of decision problems solvable in polynomial time on a unambiguous Turing machine with at most one accepting path for each input. UP contains P and is contained in NP.

A common reformulation of NP states that a language is in NP if and only if a given answer can be verified by a deterministic machine in polynomial time. Similarly, a language is in UP if a given answer can be verified in polynomial time, and the verifier machine only accepts at most one answer for each problem instance. More formally, a language L belongs to UP if there exists a two-input polynomial-time algorithm A and a constant c such that

if x in L , then there exists a unique certificate y with | y | = O ( | x | c ) such that A ( x , y ) = 1 if x is not in L, there is no certificate y with | y | = O ( | x | c ) such that A ( x , y ) = 1 algorithm A verifies L in polynomial time.

UP (and its complement co-UP) contain both the integer factorization problem and parity game problem; because determined effort has yet to find a polynomial-time solution to any of these problems, it is suspected to be difficult to show P=UP, or even P=(UPco-UP).

The Valiant-Vazirani theorem states that NP is contained in RPPromise-UP, which means that there is a randomized reduction from any problem in NP to a problem in Promise-UP.

UP is not known to have any complete problems.

References

UP (complexity) Wikipedia


Similar Topics