Suvarna Garge (Editor)

Robotic surgery

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
Robotic Surgery

http://www.ucdmc.ucdavis.edu/surgicalservices/images/body/robotic_photoBanner.jpg


Robotic surgery, computer-assisted surgery, and robotically-assisted surgery are terms for technological developments that use robotic systems to aid in surgical procedures. Robotically-assisted surgery was developed to overcome the limitations of minimally-invasive surgery and to enhance the capabilities of surgeons performing open surgery.

In the case of robotically-assisted minimally-invasive surgery, instead of directly moving the instruments, the surgeon uses one of five methods to control the instruments; either a direct telemanipulator or through computer control. A telemanipulator is a remote manipulator that allows the surgeon to perform the normal movements associated with the surgery whilst the robotic arms carry out those movements using end-effectors and manipulators to perform the actual surgery on the patient. In computer-controlled systems the surgeon uses a computer to control the robotic arms and its end-effectors, though these systems can also still use telemanipulators for their input. One advantage of using the computerised method is that the surgeon does not have to be present, but can be anywhere in the world, leading to the possibility for remote surgery.

In the case of enhanced open surgery, autonomous instruments (in familiar configurations) replace traditional steel tools, performing certain actions (such as rib spreading) with much smoother, feedback-controlled motions than could be achieved by a human hand. The main object of such smart instruments is to reduce or eliminate the tissue trauma traditionally associated with open surgery without requiring more than a few minutes training on the part of surgeons. This approach seeks to improve open surgeries, particularly cardio-thoracic, that have so far not benefited from minimally-invasive techniques.

http://washington.providence.org/hospitals/sacred-heart-medical-center-and-childrens-hospital/services/robotic-surgery/~/media/Images/Providence/Hospitals/WA/Sacred%20Heart/Robotic_Surgery_Center.jpg/


History
The worlds first surgical robot was the Heartthrob, which was developed and used for the first time in Vancouver, BC, Canada in 1983. Intimately involved were biomedical engineer, Dr. James McEwen, Geof Auchinleck, a UBC engineering physics grad, and Dr. Brian Day as well as a team of engineering students. The very first surgical robot was used in an orthopaedic surgical procedure on 12 March 1984, at the UBC Hospital in Vancouver. Over 60 arthroscopic surgical procedures were performed in the first 12 months, and a 1985 National Geographic video on industrial robots, "The Robotics Revolution", featured the device. Other related robotic devices developed at the same time included a surgical scrub nurse robot, which handed operative instruments on voice command, and a medical laboratory robotic arm. A YouTube video entitled "Arthrobot" illustrates some of these in operation.

On 12 May 2008, the first image-guided MR-compatible robotic neurosurgical procedure was performed at University of Calgary by Dr. Garnette Sutherland using the NeuroArm. In June 2008, the German Aerospace Centre (DLR) presented a robotic system for minimally invasive surgery, the MiroSurge. In September 2010, the Eindhoven University of Technology announced the development of the Sofie surgical system, the first surgical robot to employ force feedback. In September 2010, the first robotic operation at the femoral vasculature was performed at the University Medical Centre Ljubljana by a team led by Borut Geršak.

Definition
The field of surgery is entering a time of great change, spurred on by remarkable recent advances in surgical and computer technology. Computer-controlled diagnostic instruments have been used in the operating room for years to help provide vital information through ultrasound, computer-aided tomography (CAT), and other imaging technologies. Only recently have robotic systems made their way into the operating room as dexterity-enhancing surgical assistants and surgical planners, in answer to surgeons demands for ways to overcome the surgical limitations of minimally invasive laparoscopic surgery.

http://public.media.smithsonianmag.com/legacy_blog/robot-surgery.jpg


The Robotic surgical system enables surgeons to remove gallbladders and perform other general surgical procedures while seated at a computer console and 3-D video imaging system acrossthe room from the patient. The surgeons operate controls with their hands and fingers to direct a robotically controlled laparoscope. At the end of the laparoscope are advanced, articulating surgical instruments and miniature cameras that allow surgeons to peer into the body and perform the procedures.

Now Imagine : An army ranger is riddled with shrapnel deep behind enemy lines. Diagnostics from wearable sensors signal a physician at a nearby mobile army surgical hospital that his services are needed urgently. The ranger is loaded into an armored vehicle outfitted with a robotic surgery system. Within minutes, he is undergoing surgery performed by the physician, who is seated at a control console 100 kilometers out of harms way.

The patient is saved. This is the power that the amalgamation of technology and surgical sciences are offering Doctors.
Just as computers revolutionized the latter half of the 20th century, the field of robotics has the potential to equally alter how we live in the 21st century. Weve already seen how robots have changed the manufacturing of cars and other consumer goods by streamlining and speeding up the assembly line.


We even have robotic lawn mowers and robotic pets now. And robots have enabled us to see places that humans are not yet able to visit, such as other planets and the depths of the ocean. In the coming decades, we will see robots that have artificial intelligence,coming to resemble the humans that create them.

They will eventually become self-aware and conscious, and be able to do anything that a human can. When we talk about robots doing the tasks of humans, we often talk about the future, but the future of Robotic surgery is already here.