Supriya Ghosh (Editor)

Trivial measure

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit

In mathematics, specifically in measure theory, the trivial measure on any measurable space (X, Σ) is the measure μ which assigns zero measure to every measurable set: μ(A) = 0 for all A in Σ.

Properties of the trivial measure

Let μ denote the trivial measure on some measurable space (X, Σ).

  • A measure ν is the trivial measure μ if and only if ν(X) = 0.
  • μ is an invariant measure (and hence a quasi-invariant measure) for any measurable function f : X → X.
  • Suppose that X is a topological space and that Σ is the Borel σ-algebra on X.

  • μ trivially satisfies the condition to be a regular measure.
  • μ is never a strictly positive measure, regardless of (X, Σ), since every measurable set has zero measure.
  • Since μ(X) = 0, μ is always a finite measure, and hence a locally finite measure.
  • If X is a Hausdorff topological space with its Borel σ-algebra, then μ trivially satisfies the condition to be an tight measure. Hence, μ is also a Radon measure. In fact, it is the vertex of the pointed cone of all non-negative Radon measures on X.
  • If X is an infinite-dimensional Banach space with its Borel σ-algebra, then μ is the only measure on (X, Σ) that is locally finite and invariant under all translations of X. See the article There is no infinite-dimensional Lebesgue measure.
  • If X is n-dimensional Euclidean space Rn with its usual σ-algebra and n-dimensional Lebesgue measure λn, μ is a singular measure with respect to λn: simply decompose Rn as A = Rn \ {0} and B = {0} and observe that μ(A) = λn(B) = 0.
  • References

    Trivial measure Wikipedia