In mathematics, swirl functions are special functions defined as follows:
  
    
      
        S
        (
        k
        ,
        n
        ,
        r
        ,
        θ
        )
        =
        sin
        
        (
        k
        cos
        
        (
        r
        )
        −
        n
        θ
        )
      
    
    
  
where k, n are integers.
n is the number of blades, k is related to the shape of each blade.
The function S(k,n,r,θ) satisfies the following relations:
mirror symmetry
  
    
      
        f
        (
        −
        k
        ,
        n
        ,
        r
        ,
        θ
        )
        =
        −
        f
        (
        k
        ,
        n
        ,
        r
        ,
        −
        θ
        )
      
    
    
  
  
    
      
        f
        (
        −
        k
        ,
        n
        ,
        r
        ,
        θ
        )
        =
        −
        f
        (
        k
        ,
        −
        n
        ,
        r
        ,
        θ
        )
      
    
    
  
  
    
      
        f
        (
        −
        k
        ,
        −
        n
        ,
        r
        ,
        θ
        )
        =
        −
        f
        (
        k
        ,
        n
        ,
        r
        ,
        θ
        )
      
    
    
  
  
    
      
        f
        (
        −
        k
        ,
        n
        ,
        r
        ,
        −
        θ
        )
        =
        −
        f
        (
        k
        ,
        n
        ,
        r
        ,
        θ
        )
      
    
    
  
  
    
      
        f
        (
        −
        k
        ,
        n
        ,
        r
        ,
        θ
        )
        =
        −
        f
        (
        k
        ,
        n
        ,
        −
        r
        ,
        −
        θ
        )
      
    
    
  
  
    
      
        f
        (
        −
        k
        ,
        n
        ,
        −
        r
        ,
        −
        θ
        )
        =
        −
        f
        (
        k
        ,
        n
        ,
        r
        ,
        θ
        )
      
    
    
  
  
    
      
        f
        (
        −
        k
        ,
        −
        n
        ,
        −
        r
        ,
        θ
        )
        =
        −
        f
        (
        k
        ,
        n
        ,
        r
        ,
        θ
        )
      
    
    
  
  
    
      
        f
        (
        −
        k
        ,
        n
        ,
        −
        r
        ,
        −
        θ
        )
        =
        −
        f
        (
        k
        ,
        n
        ,
        r
        ,
        θ
        )
      
    
    
  
full symmetry
  
    
      
        f
        (
        k
        ,
        −
        n
        ,
        r
        ,
        θ
        )
        =
        f
        (
        k
        ,
        n
        ,
        r
        ,
        −
        θ
        )
      
    
    
  
  
    
      
        f
        (
        k
        ,
        −
        n
        ,
        r
        ,
        −
        θ
        )
        =
        f
        (
        k
        ,
        n
        ,
        r
        ,
        θ
        )
      
    
    
  
  
    
      
        f
        (
        k
        ,
        n
        ,
        −
        r
        ,
        θ
        )
        =
        f
        (
        k
        ,
        n
        ,
        r
        ,
        θ
        )
      
    
    
  
  
    
      
        f
        (
        k
        ,
        n
        ,
        −
        r
        ,
        θ
        )
        =
        f
        (
        k
        ,
        n
        ,
        r
        ,
        θ
        )
      
    
    
  
  
    
      
        f
        (
        k
        ,
        n
        ,
        −
        r
        ,
        θ
        )
        =
        f
        (
        k
        ,
        −
        n
        ,
        r
        ,
        −
        θ
        )
      
    
    
  
  
    
      
        f
        (
        k
        ,
        −
        n
        ,
        −
        r
        ,
        −
        θ
        )
        =
        f
        (
        k
        ,
        n
        ,
        r
        ,
        θ
        )
      
    
    
  
  
    
      
        f
        (
        k
        ,
        n
        ,
        −
        r
        ,
        θ
        )
        −
        f
        (
        k
        ,
        n
        ,
        r
        ,
        θ
        )
      
    
    
  
rotation symmetry
  
    
      
        S
        
          (
          k
          ,
          n
          ,
          r
          ,
          θ
          +
          
            
              
                2
                π
              
              n
            
          
          )
        
        =
        S
        (
        k
        ,
        n
        ,
        r
        ,
        θ
        )