Harman Patil (Editor)

Semi elliptic operator

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit

In mathematics — specifically, in the theory of partial differential equations — a semi-elliptic operator is a partial differential operator satisfying a positivity condition slightly weaker than that of being an elliptic operator. Every elliptic operator is also semi-elliptic, and semi-elliptic operators share many of the nice properties of elliptic operators: for example, much of the same existence and uniqueness theory is applicable, and semi-elliptic Dirichlet problems can be solved using the methods of stochastic analysis.

Definition

A second-order partial differential operator P defined on an open subset Ω of n-dimensional Euclidean space Rn, acting on suitable functions f by

P f ( x ) = i , j = 1 n a i j ( x ) 2 f x i x j ( x ) + i = 1 n b i ( x ) f x i ( x ) + c ( x ) f ( x ) ,

is said to be semi-elliptic if all the eigenvalues λi(x), 1 ≤ i ≤ n, of the matrix a(x) = (aij(x)) are non-negative. (By way of contrast, P is said to be elliptic if λi(x) > 0 for all x ∈ Ω and 1 ≤ i ≤ n, and uniformly elliptic if the eigenvalues are uniformly bounded away from zero, uniformly in i and x.) Equivalently, P is semi-elliptic if the matrix a(x) is positive semi-definite for each x ∈ Ω.

References

Semi-elliptic operator Wikipedia