Girish Mahajan (Editor)

Rosette Nebula

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
Right ascension
  
06 33 45

Distance
  
5,200 ly   (1,600 pc)

Apparent dimensions (V)
  
1.3 °

Declination
  
+04° 59′ 54″

Apparent magnitude (V)
  
9.0

Constellation
  
Monoceros

Rosette Nebula

The Rosette Nebula (also known as Caldwell 49) is a large, spherical (circular in appearance), H II region located near one end of a giant molecular cloud in the Monoceros region of the Milky Way Galaxy. The open cluster NGC 2244 (Caldwell 50) is closely associated with the nebulosity, the stars of the cluster having been formed from the nebula's matter.

The complex has the following NGC designations:

  • NGC 2237 – Part of the nebulous region (Also used to denote whole nebula)
  • NGC 2238 – Part of the nebulous region
  • NGC 2239 – Part of the nebulous region (Discovered by John Herschel)
  • NGC 2244 – The open cluster within the nebula (Discovered by John Flamsteed in 1690)
  • NGC 2246 – Part of the nebulous region
  • The cluster and nebula lie at a distance of some 5,000 light-years from Earth) and measure roughly 50 light years in diameter. The radiation from the young stars excites the atoms in the nebula, causing them to emit radiation themselves producing the emission nebula we see. The mass of the nebula is estimated to be around 10,000 solar masses.

    A survey of the nebula with the Chandra X-ray Observatory has revealed the presence of numerous new-born stars inside optical Rosette Nebula and studded within a dense molecular cloud. Altogether, approximately 2500 young stars lie in this star-forming complex, including the massive O-type stars HD 46223 and HD 46150, which are primarily responsible for blowing the ionized bubble. Most of the ongoing star-formation activity is occurring in the dense molecular cloud to the south east of the bubble.

    A diffuse X-ray glow is also seen between the stars in the bubble, which has been attributed to a super-hot plasma with temperatures ranging from 1 to 10 million K. This is significantly hotter than the 10,000 K plasmas seen in HII regions, and is likely attributed to the shock-heated winds from the massive O-type stars.

    Observing the Rosette Nebula

    The cluster of stars is visible in binoculars and quite well seen in small telescopes while the nebula itself is more difficult to spot visually and requires a telescope with a low magnification. A dark site is a must to see it. Photographically the Rosette Nebula is easier to record and it is the only way to record the red color which is not seen visually.

    References

    Rosette Nebula Wikipedia