Rahul Sharma (Editor)

Rollin film

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
Rollin film

A Rollin film, named after Bernard V. Rollin, is a 30 nm-thick liquid film of helium in the helium II state. It exhibits a "creeping" effect in response to surfaces extending past the film's level (wave propagation). Helium II can escape from any non-closed container via creeping toward and eventually evaporating from capillaries of 10−7 to 10−8 meters or greater.

Rollin films are involved in the fountain effect where superfluid helium leaks out of a container in a fountain-like manner. They have high thermal conductivity.

The ability of superfluid liquids to cross obstacles that lie at a higher level is often referred to as the Onnes-Effect, named after Heike Kamerlingh Onnes. The Onnes-Effect is enabled by the capillary forces dominating gravity and viscous forces.

Waves propagating across a Rollin film are governed by the same equation as gravity waves in shallow water, but rather than gravity, the restoring force is the Van der Waals force. The film suffers a change in chemical potential when the thickness varies. These waves are known as third sound.

References

Rollin film Wikipedia