Relative accessible surface area or relative solvent accessibility (RSA) of a protein residue is a measure of residue solvent exposure. It can be calculated by formula:
where ASA is the solvent accessible surface area and MaxASA is the maximum possible solvent accessible surface area for the residue. Both ASA and MaxASA are commonly measured in
To measure the relative solvent accessibility of the residue side-chain only, one usually takes MaxASA values that have been obtained from Gly-X-Gly tripeptides, where X is the residue of interest. Several MaxASA scales have been published and are commonly used (see Table).
In this table, the more recently published MaxASA values (from Tien et al. 2013) are systematically larger than the older values (from Miller et al. 1987 or Rose et al. 1985). This discrepancy can be traced back to the conformation in which the Gly-X-Gly tripeptides are evaluated to calculate MaxASA. The earlier works used the extended conformation, with backbone angles of
ASA and hence RSA values are generally calculated from a protein structure, for example with the software DSSP. However, there is also an extensive literature attempting to predict RSA values from sequence data, using machine-learning approaches.