Puneet Varma (Editor)

Rademacher's theorem

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit

In mathematical analysis, Rademacher's theorem, named after Hans Rademacher, states the following: If U is an open subset of Rn and  f : URm  is Lipschitz continuous, then f  is differentiable almost everywhere in U; that is, the points in U at which f  is not differentiable form a set of Lebesgue measure zero.

Generalizations

There is a version of Rademacher's theorem that holds for Lipschitz functions from a Euclidean space into an arbitrary metric space in terms of metric differentials instead of the usual derivative.

References

Rademacher's theorem Wikipedia


Similar Topics