Supriya Ghosh (Editor)

PolyL

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit

In computational complexity theory, polyL is the complexity class of decision problems that can be solved on a deterministic Turing machine by an algorithm whose space complexity is bounded by a polylogarithmic function in the size of the input. In other words, polyL = DSPACE((log n)O(1)), where n denotes the input size, and O(1) denotes a constant.

Just as LP, polyLQP. However, the only proven relationship between polyL and P is that polyLP; it is unknown if polyLP, if PpolyL, or if neither is contained in the other. One proof that polyLP is that P has a complete problem under logarithmic space many-one reductions but polyL does not due to the space hierarchy theorem. The space hierarchy theorem guarantees that DSPACE(logd n) ⊊ DSPACE(logd + 1 n) for all integers d > 0. If polyL had a complete problem, call it A, it would be an element of DSPACE(logk n) for some integer k > 0. Suppose problem B is an element of DSPACE(logk + 1 n) \ DSPACE(logk n). The assumption that A is complete implies the following O(logk n) space algorithm for B: reduce B to A in logarithmic space, then decide A in O(logk n) space. This implies that B is an element of DSPACE(logk n) and hence violates the space hierarchy theorem.

References

PolyL Wikipedia