Rahul Sharma (Editor)

Plant Induced Systemic Resistance (ISR)

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit

Induced Systemic Resistance (ISR) is an activated resistance process that is activated by biological or abiotic factors and is dependent on the physical or chemical barrier of the host plant, and its action is characterized by no direct killing or inhibition of the pathogen, but through the induction of plant disease resistance to disease prevention and control purposes. Induced resistance of plants, including plants in the role of exogenous factors under the two types of reactions. One is a rapid local reaction, the pathogen is limited to a small area of the site of infection, the other is a series of induced plant defense function, so that crops produce a comprehensive resistance, that induced resistance to the system. The induction of plant-induced resistance to pathogen protection, as early as 1901 that is known, and is known as the "system of acquired resistance." After this description of the phenomenon, several different terms have been used, namely, "acquired physiological immunity", "resistance displacement", "plant immune function" and "induced system resistance." (Mechanical or dry ice damage, electromagnetic, ultraviolet and low temperature and high temperature treatment, etc.) and chemical factors (heavy metal salts, water (water, salt, water), water, water, and so on), many biological factors (fungi, bacteria, viruses and their metabolites) Salicylic acid, etc.) can induce the plant to the virus, bacteria and fungi and other disease resistance. In practice, biological factors and chemical factors in melons, tobacco, bean, potato and rice induced resistance applications have achieved great success. Over the past decade, the study of induced system resistance has become a very active field. The biological factors of plant-induced system resistance generally include two broad categories, namely classical plant-induced resistance to disease induction(PGPR) or fungi that promote plant growth(PGPF), and plant growth-promoting rhizosphere bacteria (PGPR) or plant growth promoting fungi (PGPF). The difference is mainly due to the fact that the latter can effectively promote plant growth and increase crop yield while causing (or increasing) plant resistance to diseases (sometimes including pests). To date, work on induction of plant systemic resistance has shown that inducing plant system resistance work has important implications for basic and applied research. From the basic research point of view, whether chemical factors or biological factors induced, are involved in plant identification of exogenous factors, plant physiological and metabolic changes and plant and pathogen interaction process, is to study the interaction between plants and exogenous factors Of the very good material. From the perspective of applied research, it is important to study the significance of plant protection and growth promoting effect, and the safety of induced resistance factors, and a kind of factor can cause plant to a variety of ) Pathogens, and even extensive pests, the protection of the system, then it has as a good basis for applied research materials. The research and application of inducing plant system resistance have good prospects. However, the time for extensive and systematic research is still short, so some problems need to be further studied in the research and application. (2) how to systematically improve the selection of induction factors; (3) the injury of induced factors; (4) the phenomenon of multi-effect of induced factors; (3) the effects of chemical induction factors on environmental factors; (3) (5) Establishment of population stability of multivariate biological inducible factor.

References

Plant Induced Systemic Resistance (ISR) Wikipedia