Neha Patil (Editor)

Olson's Extinction

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit

Olson's Extinction was a mass extinction that occurred 270 million years ago in the Early Guadalupian of the Permian period and which predated the Permian–Triassic extinction event. Everett Olson noted that there was a hiatus and a sudden change in between the Early Permian and Middle/Late Permian faunas. Since then this event has been realized across many groups, including plants, marine invertebrates, and tetrapods.

Contents

Identification

The first evidence of extinction came when Everett C. Olson noted a hiatus between Early Permian faunas dominated by pelycosaurs and therapsid dominated faunas of the Middle and Late Permian. First considered to be a preservational gap in the fossil record, the event was originally dubbed 'Olson's Gap'. To compound the difficulty in identifying the cause of the 'gap', researchers were having difficulty in resolving the uncertainty which exists regarding the duration of the overall extinction and about the timing and duration of various groups' extinctions within the greater process. Theories emerged which suggested the extinction was prolonged, spread out over a several million years or that multiple extinction pulses preceded the Permian–Triassic extinction event. The impact of Olson's Extinction amplified the effects of the Permian–Triassic extinction event and the final extinction killed off only about 80% of species alive at that time while the other losses occurred during the first pulse or the interval between pulses.

During the 1990s and 2000s researchers gathered evidence on the biodiversity of plants, marine organism and tetrapods that indicated an extinction pulse preceding the Permian–Triassic extinction event had a profound impact on life on land. On land Sahney and Benton showed that even discounting the sparse fossil assemblages from the extinction period, the event can be confirmed by the stages of time bracketing the event since well preserved sections of the fossil record from both before and after the event have been found and they referred to the event as 'Olson's Extinction'. The 'Gap' was finally closed in 2012 when Michael Benton confirmed that the terrestrial fossil record of the Middle Permian is well represented by fossil localities in the American southwest and European Russia and that the gap is not an artifact of a poor rock record since there is no correlation between geological and biological records of the Middle Permian.

Possible causes

There is no widely accepted theory for the cause of Olson's Extinction. Recent research has indicated that climate change may be a possible cause. Extreme environments were observed from the Permian of Kansas which resulted from a combination of hot climate and acidic waters particularly coincident with Olson’s Extinction. Whether this climate change was a result of Earth's natural processes or exacerbated by another event is unknown.

Plants

Plants showed large turnover in the Mid-Late Permian and into the Triassic. The duration of higher extinction rates (>60%) in land plants was about 23.4 Myr, starting from Olson's Extinction and into the early Middle Triassic. Olson's Extinction represents the third highest peak of extinction rates seen in plants throughout the Paleozoic, and the number of genera fell by 25%. . The extinction was particularly severe among free-sporing plants; seed plants seem to have been largely unaffected.

Tetrapods

The Permian was a time of rapid change for tetrapods; in particular there was a major changeover from faunas dominated by basal synapsids ("pelycosaurs”) and reptiliomorphs (Diadectes) to faunas dominated by therapsids (Dinocephalia, Anomodontia, Gorgonopsia, and Cynodontia) some of which were direct ancestors of mammals. In 2008 Sahney and Benton confirmed that this was not just a turnover (gradual replacement of one faunal complex by another) but a real extinction event in which a significant drop in the biodiversity of tetrapods on a global scale and community level occurred. The extinction appears to have taken place in two phases: Edaphosauridae and Ophiacodontidae died out across the Kungurian/Roadian boundary, while Caseidae and Therapsida diversified; later in the Roadian Sphenacodontidae died out and Caseidae went into decline. Olson's extinction appears to have been the highest Paleozoic peak in extinction rate observed in Eureptilia, exceeding even the End Permian mass extinction. Amphibians were also particularly hard-hit.

In December 2011, the fossilized remains of the 'youngest' pelycosaur was described by Modesto et al. as from 260 million years ago in South Africa, the first evidence that one of these animals survived Olson’s Extinction. This type of animal is called a disaster taxon, an organism that survives a major environmental disruption, perhaps forming the basis for a new adaptive radiation.

Fish

Extinction rates in fish increased noticeably between the Cisuralian and the Guadalupian, the time of Olson's extinction. However, origination rates also rose, and so there does not appear to have been any substantial decrease in species richness Using data on chondrichthyan diversity, Koot showed that there was little substantial decline in diversity until the Middle of the Guadalupian.

Recovery

Fauna did not recover fully from Olson's Extinction before the impact of the Permian-Triassic extinction event. Estimates of recovery time vary, where some authors indicated recovery was prolonged, lasting 30 million years into the Triassic.

Several important events took place during Olson's Extinction, most notably the origin of therapsids, a group that includes the evolutionary ancestors of mammals. Further research on the recently identified primitive therapsid of the Xidagou Formation (Dashankou locality) in China of Roadian age may provide more information on this topic.

References

Olson's Extinction Wikipedia