In mathematics, a Neumann polynomial, introduced by Carl Neumann for the special case                     α        =        0                , is a polynomial in 1/z used to expand functions in term of Bessel functions.
The first few polynomials are
                              O                      0                                (            α            )                          (        t        )        =                              1            t                          ,                                              O                      1                                (            α            )                          (        t        )        =        2                                            α              +              1                                      t                              2                                                    ,                                              O                      2                                (            α            )                          (        t        )        =                                            2              +              α                        t                          +        4                                            (              2              +              α              )              (              1              +              α              )                                      t                              3                                                    ,                                              O                      3                                (            α            )                          (        t        )        =        2                                            (              1              +              α              )              (              3              +              α              )                                      t                              2                                                    +        8                                            (              1              +              α              )              (              2              +              α              )              (              3              +              α              )                                      t                              4                                                    ,                                              O                      4                                (            α            )                          (        t        )        =                                            (              1              +              α              )              (              4              +              α              )                                      2              t                                      +        4                                            (              1              +              α              )              (              2              +              α              )              (              4              +              α              )                                      t                              3                                                    +        16                                            (              1              +              α              )              (              2              +              α              )              (              3              +              α              )              (              4              +              α              )                                      t                              5                                                    .                A general form for the polynomial is
                              O                      n                                (            α            )                          (        t        )        =                                            α              +              n                                      2              α                                                ∑                      k            =            0                                ⌊            n                          /                        2            ⌋                          (        −        1                  )                      n            −            k                                                              (              n              −              k              )              !                                      k              !                                                                          (                                                      −                α                                            n                −                k                                                    )                                                            (                                          2                t                                      )                                n            +            1            −            2            k                          ,                they have the generating function
                                                                        (                                                      z                    2                                                  )                                            α                                                    Γ              (              α              +              1              )                                                            1                          t              −              z                                      =                  ∑                      n            =            0                                    O                      n                                (            α            )                          (        t        )                  J                      α            +            n                          (        z        )        ,                where J are Bessel functions.
To expand a function f in form
                    f        (        z        )        =                  ∑                      n            =            0                                    a                      n                                    J                      α            +            n                          (        z        )                        for                               |                z                  |                <        c                 compute
                              a                      n                          =                              1                          2              π              i                                                ∮                                    |                        z                          |                        =                          c              ′                                                                          Γ              (              α              +              1              )                                                      (                                                      z                    2                                                  )                                            α                                                    f        (        z        )                  O                      n                                (            α            )                          (        z        )                  d                z        ,                where                               c          ′                <        c                 and c is the distance of the nearest singularity of                               z                      −            α                          f        (        z        )                 from                     z        =        0                .
An example is the extension
                                          (                                                            1                  2                                                      z            )                                s                          =        Γ        (        s        )        ⋅                  ∑                      k            =            0                          (        −        1                  )                      k                                    J                      s            +            2            k                          (        z        )        (        s        +        2        k        )                                            (                                                      −                s                            k                                      )                                              or the more general Sonine formula
                              e                      i            γ            z                          =        Γ        (        s        )        ⋅                  ∑                      k            =            0                                    i                      k                                    C                      k                                (            s            )                          (        γ        )        (        s        +        k        )                                                            J                                  s                  +                  k                                            (              z              )                                                      (                                                      z                    2                                                  )                                            s                                                    .                where                               C                      k                                (            s            )                                   is Gegenbauer's polynomial. Then,
                                                                        (                                                      z                    2                                                  )                                            2                k                                                    (              2              k              −              1              )              !                                                J                      s                          (        z        )        =                  ∑                      i            =            k                          (        −        1                  )                      i            −            k                                                              (                                                      i                +                k                −                1                                            2                k                −                1                                                    )                                                                          (                                                      i                +                k                +                s                −                1                                            2                k                −                1                                                    )                                      (        s        +        2        i        )                  J                      s            +            2            i                          (        z        )        ,                                              ∑                      n            =            0                                    t                      n                                    J                      s            +            n                          (        z        )        =                                            e                                                                    t                    z                                    2                                                                    t                              s                                                              ∑                      j            =            0                                                                              (                −                                                      z                                          2                      t                                                                      )                                            j                                                    j              !                                                                          γ                              (                j                +                s                ,                                                                            t                      z                                        2                                                  )                                                                  Γ              (              j              +              s              )                                      =                  ∫                      0                                ∞                                    e                      −                                                            z                                      x                                          2                                                                                        2                  t                                                                                                        z              x                        t                                                                              J                                  s                                            (              z                                                1                  −                                      x                                          2                                                                                  )                                                                        1                  −                                      x                                          2                                                                                                  s                                                            d        x        ,                the confluent hypergeometric function
                    M        (        a        ,        s        ,        z        )        =        Γ        (        s        )                  ∑                      k            =            0                                ∞                                                (            −                                          1                t                                      )                                k                                    L                      k                                (            −            a            −            k            )                          (        t        )                                                            J                                  s                  +                  k                  −                  1                                                            (                2                                                      t                    z                                                  )                                                    (                                                t                  z                                                            )                                  s                  −                  k                  −                  1                                                                            and in particular
                                                                        J                                  s                                            (              2              z              )                                      z                              s                                                    =                                                            4                                  s                                            Γ                              (                s                +                                                      1                    2                                                  )                                                    π                                                e                      2            i            z                                    ∑                      k            =            0                                    L                      k                                (            −            s            −            1                          /                        2            −            k            )                                    (                                                    i                t                            4                                )                (        4        i        z                  )                      k                                                                              J                                  2                  s                  +                  k                                                            (                2                                                      t                    z                                                  )                                                                                      t                  z                                                            2                s                +                k                                                    ,                the index shift formula
                    Γ        (        ν        −        μ        )                  J                      ν                          (        z        )        =        Γ        (        μ        +        1        )                  ∑                      n            =            0                                                              Γ              (              ν              −              μ              +              n              )                                      n              !              Γ              (              ν              +              n              +              1              )                                                            (                                          z                2                                      )                                ν            −            μ            +            n                                    J                      μ            +            n                          (        z        )        ,                the Taylor expansion (addition formula)
                                                                        J                                  s                                                            (                                                                            z                                              2                                                              −                    2                    u                    z                                                  )                                                                    (                                                                            z                                              2                                                              −                    2                    u                    z                                                  )                                            ±                s                                                    =                  ∑                      k            =            0                                                              (              ±              u                              )                                  k                                                                    k              !                                                                                          J                                  s                  ±                  k                                            (              z              )                                      z                              ±                s                                                            (cf.) and the expansion of the integral of the Bessel function
                    ∫                  J                      s                          (        z        )        d        z        =        2                  ∑                      k            =            0                                    J                      s            +            2            k            +            1                          (        z        )                are of the same type.