Suvarna Garge (Editor)

Neumann polynomial

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit

In mathematics, a Neumann polynomial, introduced by Carl Neumann for the special case α = 0 , is a polynomial in 1/z used to expand functions in term of Bessel functions.

The first few polynomials are

O 0 ( α ) ( t ) = 1 t , O 1 ( α ) ( t ) = 2 α + 1 t 2 , O 2 ( α ) ( t ) = 2 + α t + 4 ( 2 + α ) ( 1 + α ) t 3 , O 3 ( α ) ( t ) = 2 ( 1 + α ) ( 3 + α ) t 2 + 8 ( 1 + α ) ( 2 + α ) ( 3 + α ) t 4 , O 4 ( α ) ( t ) = ( 1 + α ) ( 4 + α ) 2 t + 4 ( 1 + α ) ( 2 + α ) ( 4 + α ) t 3 + 16 ( 1 + α ) ( 2 + α ) ( 3 + α ) ( 4 + α ) t 5 .

A general form for the polynomial is

O n ( α ) ( t ) = α + n 2 α k = 0 n / 2 ( 1 ) n k ( n k ) ! k ! ( α n k ) ( 2 t ) n + 1 2 k ,

they have the generating function

( z 2 ) α Γ ( α + 1 ) 1 t z = n = 0 O n ( α ) ( t ) J α + n ( z ) ,

where J are Bessel functions.

To expand a function f in form

f ( z ) = n = 0 a n J α + n ( z )

for | z | < c compute

a n = 1 2 π i | z | = c Γ ( α + 1 ) ( z 2 ) α f ( z ) O n ( α ) ( z ) d z ,

where c < c and c is the distance of the nearest singularity of z α f ( z ) from z = 0 .

Examples

An example is the extension

( 1 2 z ) s = Γ ( s ) k = 0 ( 1 ) k J s + 2 k ( z ) ( s + 2 k ) ( s k )

or the more general Sonine formula

e i γ z = Γ ( s ) k = 0 i k C k ( s ) ( γ ) ( s + k ) J s + k ( z ) ( z 2 ) s .

where C k ( s ) is Gegenbauer's polynomial. Then,

( z 2 ) 2 k ( 2 k 1 ) ! J s ( z ) = i = k ( 1 ) i k ( i + k 1 2 k 1 ) ( i + k + s 1 2 k 1 ) ( s + 2 i ) J s + 2 i ( z ) , n = 0 t n J s + n ( z ) = e t z 2 t s j = 0 ( z 2 t ) j j ! γ ( j + s , t z 2 ) Γ ( j + s ) = 0 e z x 2 2 t z x t J s ( z 1 x 2 ) 1 x 2 s d x ,

the confluent hypergeometric function

M ( a , s , z ) = Γ ( s ) k = 0 ( 1 t ) k L k ( a k ) ( t ) J s + k 1 ( 2 t z ) ( t z ) s k 1

and in particular

J s ( 2 z ) z s = 4 s Γ ( s + 1 2 ) π e 2 i z k = 0 L k ( s 1 / 2 k ) ( i t 4 ) ( 4 i z ) k J 2 s + k ( 2 t z ) t z 2 s + k ,

the index shift formula

Γ ( ν μ ) J ν ( z ) = Γ ( μ + 1 ) n = 0 Γ ( ν μ + n ) n ! Γ ( ν + n + 1 ) ( z 2 ) ν μ + n J μ + n ( z ) ,

the Taylor expansion (addition formula)

J s ( z 2 2 u z ) ( z 2 2 u z ) ± s = k = 0 ( ± u ) k k ! J s ± k ( z ) z ± s

(cf.) and the expansion of the integral of the Bessel function

J s ( z ) d z = 2 k = 0 J s + 2 k + 1 ( z )

are of the same type.

References

Neumann polynomial Wikipedia