Puneet Varma (Editor)

Nagata's conjecture on curves

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
Nagata's conjecture on curves

In mathematics, the Nagata conjecture on curves, named after Masayoshi Nagata, governs the minimal degree required for a plane algebraic curve to pass through a collection of very general points with prescribed multiplicities. Nagata arrived at the conjecture via work on the 14th problem of Hilbert, which asks whether the invariant ring of a linear group action on the polynomial ring k[x1, ..., xn] over some field k is finitely generated. Nagata published the conjecture in a 1959 paper in the American Journal of Mathematics, in which he presented a counterexample to Hilbert's 14th problem:

Nagata Conjecture. Suppose p1, ..., pr are very general points in P2 and that m1, ..., mr are given positive integers. Then for r > 9 any curve C in P2 that passes through each of the points pi with multiplicity mi must satisfy deg C > 1 r i = 1 r m i .

The only case when this is known to hold is when r is a perfect square, which was proved by Nagata. Despite much interest the other cases remain open. A more modern formulation of this conjecture is often given in terms of Seshadri constants and has been generalised to other surfaces under the name of the Nagata–Biran conjecture.

The condition r > 9 is easily seen to be necessary. The cases r > 9 and r ≤ 9 are distinguished by whether or not the anti-canonical bundle on the blowup of P2 at a collection of r points is nef.

References

Nagata's conjecture on curves Wikipedia