Neha Patil (Editor)

Mercury(I) sulfate

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
Formula
  
Hg2SO4

Density
  
7.56 g/cm³

Molar mass
  
497.24 g/mol

Appearance
  
whitish-yellow crystals

Mercury(I) sulfate, commonly called mercurous sulphate (UK) or mercurous sulfate (US) is the chemical compound Hg2SO4. Mercury(I) sulfate is a metallic compound that is white, pale yellow or beige powder. It is a metallic salt of sulfuric acid formed by replacing both hydrogen atoms with mercury(I). It is highly toxic; it could be fatal if inhaled, ingested, or absorbed by skin.

Contents

Structure

The crystal structure of mercurous sulfate is made up of Hg22+ dumbbells and SO42− anions as main building units. Hg22+ dumbbell is surrounded by four Oxygen atoms with Hg₋O distance ranging from 2.23 to 2.93 Å, whereas Hg-Hg distance is approximately 2.500Å. Studies have shown mercury(I) sulfate to have the mercury atoms arranged in doublets with a bond distance of 2.500Å. The metal atom doublets are oriented parallel to the an axis in a unit cell. Mercury doublets form part of infinite chain SO4 - Hg - Hg - SO4 - Hg - Hg - … The Hg - Hg - O bond angle is 165°±1 . The chain crosses the unit cell diagonally. The mercury sulfate structure is held together by weak Hg-O interactions. The SO4 does not act as a single anion, but rather coordinated to the mercury metal.

Preparation

One way to prepare mercury(I) sulfate is to mix the acidic solution of mercury(I) nitrate with 1 to 6 sulfuric acid solution:,

Hg2(NO3)2 + H2SO4 → Hg2SO4 + 2 HNO3

It can also be prepared by reacting an excess of mercury with concentrated sulfuric acid:

2 Hg + 2 H2SO4 → Hg2SO4 + 2 H2O + SO2

Use in Electrochemical Cells

Mercury(I) Sulfate is often used in electrochemical cells, It was first introduced in electrochemical cells by Latimer Clark in 1872, It was then alternatively used in Weston Cells mady by George Augustus Hulett in 1911. It has been found to be a good electrode at high temperatures above 100 °C along with Silver Sulfate. Mercury(I) Sulfate was found to decompose at high temperatures. The decomposition process is endothermic and occurs between 335 and 500. Mercury(I) sulfate has unique properties that make the standard cells possible. It has a rather small solubility (about a gram per liter) that diffusion from the cathode system is not excessive, and it is sufficient to give a large potential at a mercury electrode.

References

Mercury(I) sulfate Wikipedia