In mathematics, a Lucas chain is a restricted type of addition chain, named for the French mathematician Édouard Lucas. It is a sequence
a0, a1, a2, a3, ...
that satisfies
a0=1,and
for each k > 0: ak = ai + aj, and either ai = aj or |ai − aj| = am, for some i, j, m < k.The sequence of powers of 2 (1, 2, 4, 8, 16, ...) and the Fibonacci sequence (with a slight adjustment of the starting point 1, 2, 3, 5, 8, ...) are simple examples of Lucas chains.
Lucas chains were introduced by Peter Montgomery in 1983. If L(n) is the length of the shortest Lucas chain for n, then Kutz has shown that most n do not have L < (1-ε) logφ n, where φ is the Golden ratio.
References
Lucas chain Wikipedia(Text) CC BY-SA