Puneet Varma (Editor)

Lommel function

Updated on
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
Lommel function

The Lommel differential equation is an inhomogeneous form of the Bessel differential equation:

z 2 d 2 y d z 2 + z d y d z + ( z 2 ν 2 ) y = z μ + 1 .

Two solutions are given by the Lommel functions sμ,ν(z) and Sμ,ν(z), introduced by Eugen von Lommel (1880),

s μ , ν ( z ) = π 2 [ Y ν ( z ) 0 z x μ J ν ( x ) d x J ν ( z ) 0 z x μ Y ν ( x ) d x ] S μ , ν ( z ) = s μ , ν ( z ) + 2 μ 1 Γ ( μ + ν + 1 2 ) Γ ( μ ν + 1 2 ) ( sin [ ( μ ν ) π 2 ] J ν ( z ) cos [ ( μ ν ) π 2 ] Y ν ( z ) )

where Jν(z) is a Bessel function of the first kind, and Yν(z) a Bessel function of the second kind.

References

Lommel function Wikipedia


Similar Topics
Falling Overnight
Sam McMahon
Adamo Coulibaly
Topics
 
B
i
Link
H2
L