Rahul Sharma (Editor)

Jordan's theorem (symmetric group)

Updated on
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
Covid-19

Jordan's theorem is a statement in finite group theory. It states that if a primitive permutation group G is a subgroup of the symmetric group Sn and contains a p-cycle for some prime number p < n − 2, then G is either the whole symmetric group Sn or the alternating group An.

The statement can be generalized to the case that p is a prime power.

References

Jordan's theorem (symmetric group) Wikipedia


Similar Topics
Macondo (film)
Wally Badarou
John Okafor
Topics
 
B
i
Link
H2
L