Sneha Girap (Editor)

Jean Louis Verdier

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
Nationality
  
French

Died
  
August 25, 1989

Role
  
Mathematician

Name
  
Jean-Louis Verdier

Fields
  
Alma mater
  
Education
  
University of Paris


Jean-Louis Verdier httpsowpdbmfodephotoSmallid11708

Born
  
2 February 1935 (
1935-02-02
)

Institutions
  
Doctoral students
  
Daniel AlibertArnaud BeauvilleAlain BruguieresGerard Gonzalez-SprinbergGeorges Maltsiniotis

Similar People
  

Notable students
  
Arnaud Beauville

Doctoral advisor
  

Jean-Louis Verdier ([vɛʁdje]; 2 February 1935 – 25 August 1989) was a French mathematician who worked, under the guidance of Alexander Grothendieck, on derived categories and Verdier duality. He was a close collaborator of Alexander Grothendieck, notably contributing to SGA 4 his theory of hypercovers and anticipating the later development of étale homotopy by Michael Artin and Barry Mazur, following a suggestion he attributed to Pierre Cartier. Saul Lubkin's related theory of rigid hypercovers was later taken up by Eric Friedlander in his definition of the etale topological type.

Verdier was a student at the elite École Normale Supérieure in Paris, and later became director of studies there, as well as a Professor at the University of Paris VII. For many years he directed a joint seminar at the École Normale Supérieure with Adrien Douady. Verdier was a member of Bourbaki. In 1984 he was the president of the Société Mathématique de France.

In 1976 Verdier developed a useful regularity condition on stratified sets that the Chinese-Australian mathematician Tzee-Char Kuo had previously shown implied the Whitney conditions for subanalytic sets (such as real or complex analytic varieties). Verdier called the condition (w) for Whitney, as at the time he thought (w) might be equivalent to Whitney's condition (b). Real algebraic examples for which the Whitney conditions hold but Verdier's condition (w) fails, were constructed by David Trotman who has obtained many geometric properties of (w)-regular stratifications. Work of Bernard Teissier, aided by Jean-Pierre Henry and Michel Merle at the École Polytechnique, led to the 1982 result that Verdier's condition (w) is equivalent to the Whitney conditions for complex analytic stratifications.

Verdier later worked on the theory of integrable systems.

References

Jean-Louis Verdier Wikipedia


Similar Topics