| Notation I              M              G                                            p                          (        α        ,        β        ,                  Ψ                )              {\displaystyle {\rm {IMG}}_{p}(\alpha ,\beta ,{\boldsymbol {\Psi }})} Parameters α              {\displaystyle \alpha }   shape parameter (real)                    β        >        0              {\displaystyle \beta >0}   scale parameter                              Ψ                      {\displaystyle {\boldsymbol {\Psi }}}   scale (positive-definite real                     p        ×        p              {\displaystyle p\times p}   matrix) Support X                      {\displaystyle \mathbf {X} }   positive-definite real                     p        ×        p              {\displaystyle p\times p}   matrix PDF |                                            Ψ                                                              |                                                  α                                                                                    β                                  p                  α                                                            Γ                                  p                                            (              α              )                                                |                          X                                      |                                −            α            −            (            p            +            1            )                          /                        2                          exp                          (                                    t              r                                            (            −                                          1                β                                                    Ψ                                                      X                                            −                1                                      )                    )                      {\displaystyle {\frac {|{\boldsymbol {\Psi }}|^{\alpha }}{\beta ^{p\alpha }\Gamma _{p}(\alpha )}}|\mathbf {X} |^{-\alpha -(p+1)/2}\exp \left({\rm {tr}}\left(-{\frac {1}{\beta }}{\boldsymbol {\Psi }}\mathbf {X} ^{-1}\right)\right)}                                Γ                      p                                {\displaystyle \Gamma _{p}}   is the multivariate gamma function. | ||
In statistics, the inverse matrix gamma distribution is a generalization of the inverse gamma distribution to positive-definite matrices. It is a more general version of the inverse Wishart distribution, and is used similarly, e.g. as the conjugate prior of the covariance matrix of a multivariate normal distribution or matrix normal distribution. The compound distribution resulting from compounding a matrix normal with an inverse matrix gamma prior over the covariance matrix is a generalized matrix t-distribution.
This reduces to the inverse Wishart distribution with                     
References
Inverse matrix gamma distribution Wikipedia(Text) CC BY-SA
