Rahul Sharma (Editor)

Harmonious coloring

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
Harmonious coloring

In graph theory, a harmonious coloring is a (proper) vertex coloring in which every pair of colors appears on at most one pair of adjacent vertices. The harmonious chromatic number χH(G) of a graph G is the minimum number of colors needed for any harmonious coloring of G.

Every graph has a harmonious coloring, since it suffices to assign every vertex a distinct color; thus χH(G) ≤ |V(G)|. There trivially exist graphs G with χH(G) > χ(G) (where χ is the chromatic number); one example is the path of length 2, which can be 2-colored but has no harmonious coloring with 2 colors.

Some properties of χH(G):

  1. χ H ( T k , 3 ) = 3 ( k + 1 ) 2 , where Tk,3 is the complete k-ary tree with 3 levels. (Mitchem 1989)

Harmonious coloring was first proposed by Harary and Plantholt (1982). Still very little is known about it.

References

Harmonious coloring Wikipedia


Similar Topics