In mathematics, the Fox–Wright function (also known as Fox–Wright Psi function or just Wright function, not to be confused with Wright Omega function) is a generalisation of the generalised hypergeometric function pFq(z) based on an idea of E. Maitland Wright (1935):
                                                              p                                    Ψ                      q                                    [                                                                      (                                      a                                          1                                                        ,                                      A                                          1                                                        )                                                  (                                      a                                          2                                                        ,                                      A                                          2                                                        )                                                  …                                                  (                                      a                                          p                                                        ,                                      A                                          p                                                        )                                                                              (                                      b                                          1                                                        ,                                      B                                          1                                                        )                                                  (                                      b                                          2                                                        ,                                      B                                          2                                                        )                                                  …                                                  (                                      b                                          q                                                        ,                                      B                                          q                                                        )                                                              ;          z          ]                =                  ∑                      n            =            0                                ∞                                                              Γ              (                              a                                  1                                            +                              A                                  1                                            n              )              ⋯              Γ              (                              a                                  p                                            +                              A                                  p                                            n              )                                      Γ              (                              b                                  1                                            +                              B                                  1                                            n              )              ⋯              Γ              (                              b                                  q                                            +                              B                                  q                                            n              )                                                                                  z                              n                                                    n              !                                      .                Its normalisation
                                                              p                                    Ψ                      q                                ∗                                    [                                                                      (                                      a                                          1                                                        ,                                      A                                          1                                                        )                                                  (                                      a                                          2                                                        ,                                      A                                          2                                                        )                                                  …                                                  (                                      a                                          p                                                        ,                                      A                                          p                                                        )                                                                              (                                      b                                          1                                                        ,                                      B                                          1                                                        )                                                  (                                      b                                          2                                                        ,                                      B                                          2                                                        )                                                  …                                                  (                                      b                                          q                                                        ,                                      B                                          q                                                        )                                                              ;          z          ]                =                                            Γ              (                              b                                  1                                            )              ⋯              Γ              (                              b                                  q                                            )                                      Γ              (                              a                                  1                                            )              ⋯              Γ              (                              a                                  p                                            )                                                ∑                      n            =            0                                ∞                                                              Γ              (                              a                                  1                                            +                              A                                  1                                            n              )              ⋯              Γ              (                              a                                  p                                            +                              A                                  p                                            n              )                                      Γ              (                              b                                  1                                            +                              B                                  1                                            n              )              ⋯              Γ              (                              b                                  q                                            +                              B                                  q                                            n              )                                                                                  z                              n                                                    n              !                                              becomes pFq(z) for A1...p = B1...q = 1.
The Fox–Wright function is a special case of the Fox H-function (Srivastava & Manocha 1984, p. 50):
                                                              p                                    Ψ                      q                                    [                                                                      (                                      a                                          1                                                        ,                                      A                                          1                                                        )                                                  (                                      a                                          2                                                        ,                                      A                                          2                                                        )                                                  …                                                  (                                      a                                          p                                                        ,                                      A                                          p                                                        )                                                                              (                                      b                                          1                                                        ,                                      B                                          1                                                        )                                                  (                                      b                                          2                                                        ,                                      B                                          2                                                        )                                                  …                                                  (                                      b                                          q                                                        ,                                      B                                          q                                                        )                                                              ;          z          ]                =                  H                      p            ,            q            +            1                                1            ,            p                                    [          −          z                      |                                                                                (                    1                    −                                          a                                              1                                                              ,                                          A                                              1                                                              )                                                        (                    1                    −                                          a                                              2                                                              ,                                          A                                              2                                                              )                                                        …                                                        (                    1                    −                                          a                                              p                                                              ,                                          A                                              p                                                              )                                                                                        (                    0                    ,                    1                    )                                                        (                    1                    −                                          b                                              1                                                              ,                                          B                                              1                                                              )                                                        (                    1                    −                                          b                                              2                                                              ,                                          B                                              2                                                              )                                                        …                                                        (                    1                    −                                          b                                              q                                                              ,                                          B                                              q                                                              )                                                                                            ]                .